Results 1  10
of
462
A Storage Model With SelfSimilar Input
, 1994
"... A storage model with selfsimilar input process is studied. A relation coupling together the storage requirement, the achievable utilization and the output rate is derived. A lower bound for the complementary distribution function of the storage level is given. Keywords: Selfsimilar, fractional Bro ..."
Abstract

Cited by 302 (13 self)
 Add to MetaCart
A storage model with selfsimilar input process is studied. A relation coupling together the storage requirement, the achievable utilization and the output rate is derived. A lower bound for the complementary distribution function of the storage level is given. Keywords: Selfsimilar, fractional Brownian motion, Local Area Network traffic 1 Introduction In a series of papers (e.g. Leland [8], Leland and Wilson [7], Fowler and Leland [4], Leland et al. [9]), researchers from Bellcore have reported and analyzed remarkable Local Area Network (LAN) traffic measurements challenging traditional data traffic modelling. The Bellcore data are both very accurate and extensive in time, and their most striking feature is the tremendous burstiness of LAN traffic at, practically, any timescale. More than that, the statistical analysis has shown that the traffic is selfsimilar with a surprising accuracy (see Leland et al. [9]). Traditional traffic models based on the Poisson process or, more gener...
Power and Bipower Variation with Stochastic Volatility and Jumps
, 2003
"... This paper shows that realised power variation and its extension we introduce here called realised bipower variation is somewhat robust to rare jumps. We show realised bipower variation estimates integrated variance in SV models  thus providing a model free and consistent alternative to realis ..."
Abstract

Cited by 152 (21 self)
 Add to MetaCart
This paper shows that realised power variation and its extension we introduce here called realised bipower variation is somewhat robust to rare jumps. We show realised bipower variation estimates integrated variance in SV models  thus providing a model free and consistent alternative to realised variance. Its robustness property means that if we have an SV plus infrequent jumps process then the di#erence between realised variance and realised bipower variation estimates the quadratic variation of the jump component. This seems to be the first method which can divide up quadratic variation into its continuous and jump components. Various extensions are given. Proofs of special cases of these results are given.
Pricing the risks of default
 Review of Derivatives Research
, 1998
"... the problems and opportunities facing the financial services industry in its search for competitive excellence. The Center's research focuses on the issues related to managing risk at the firm level as well as ways to improve productivity and performance. The Center fosters the development of a comm ..."
Abstract

Cited by 121 (6 self)
 Add to MetaCart
the problems and opportunities facing the financial services industry in its search for competitive excellence. The Center's research focuses on the issues related to managing risk at the firm level as well as ways to improve productivity and performance. The Center fosters the development of a community of faculty, visiting scholars and Ph.D. candidates whose research interests complement and support the mission of the Center. The Center works closely with industry executives and practitioners to ensure that its research is informed by the operating realities and competitive demands facing industry participants as they pursue competitive excellence. Copies of the working papers summarized here are available from the Center. If you would like to learn more about the Center or become a member of our research community, please let us know of your interest.
Asymptotic error distributions for the Euler method for stochastic differential equations
 THE ANNALS OF PROBABILITY
, 1998
"... We are interested in the rate of convergence of the Euler scheme approximation of the solution to a stochastic differential equation driven by a general (possibly discontinuous) semimartingale, and by the asymptotic behavior of the associated normalized error. It is well known that for Itô’s equatio ..."
Abstract

Cited by 106 (8 self)
 Add to MetaCart
We are interested in the rate of convergence of the Euler scheme approximation of the solution to a stochastic differential equation driven by a general (possibly discontinuous) semimartingale, and by the asymptotic behavior of the associated normalized error. It is well known that for Itô’s equations the rate is 1 / √ n; we provide a necessary and sufficient condition for this rate to be 1 / √ n when the driving semimartingale is a continuous martingale, or a continuous semimartingale under a mild additional assumption; we also prove that in these cases the normalized error processes converge in law. The rate can also differ from 1 / √ n: this is the case for instance if the driving process is deterministic, or if it is a Lévy process without a Brownian component. It is again 1 / √ n when the driving process is Lévy with a nonvanishing Brownian component, but then the normalized error processes converge in law in the finitedimensional sense only, while the discretized normalized error processes converge in law in the Skorohod
The Fundamental Theorem Of Asset Pricing For Unbounded Stochastic Processes
 MATHEMATISCHE ANNALEN
, 1996
"... The Fundamental Theorem of Asset Pricing states  roughly speaking  that the absence of arbitrage possibilities for a stochastic process S is equivalent to the existence of an equivalent martingale measure for S. It turns out that it is quite hard to give precise and sharp versions of this theorem ..."
Abstract

Cited by 102 (23 self)
 Add to MetaCart
The Fundamental Theorem of Asset Pricing states  roughly speaking  that the absence of arbitrage possibilities for a stochastic process S is equivalent to the existence of an equivalent martingale measure for S. It turns out that it is quite hard to give precise and sharp versions of this theorem in proper generality, if one insists on modifying the concept of "no arbitrage" as little as possible. It was shown in [DS94] that for a locally bounded R^dvalued semimartingale S the condition of No Free Lunch with Vanishing Risk is equivalent to the existence of an equivalent local martingale measure for the process S. It was asked whether the local boundedness assumption on S may be dropped. In the present paper we show that if we drop in this theorem the local boundedness assumption on S the theorem remains true if we replace the term equivalent local martingale measure by the term equivalent sigmamartingale measure. The concept of sigmamartingales was introduced by Chou and Emer...
Continuous Record Asymptotics for Rolling Sample Variance Estimators
 Econometrica
, 1996
"... It is widely known that conditional covariances of asset returns change over time. ..."
Abstract

Cited by 91 (0 self)
 Add to MetaCart
It is widely known that conditional covariances of asset returns change over time.
TimeChanged Lévy Processes and Option Pricing
, 2002
"... As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return ..."
Abstract

Cited by 90 (13 self)
 Add to MetaCart
As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often negatively for equities. We propose that timechanged Lévy processes be used to simultaneously address these three facets of the underlying asset return process. We show that our framework encompasses almost all of the models proposed in the option pricing literature. Despite the generality of our approach, we show that it is straightforward to select and test a particular option pricing model through the use of characteristic function technology.
On choosing and bounding probability metrics
 Internat. Statist. Rev. (2002
"... Abstract. When studying convergence of measures, an important issue is the choice of probability metric. We provide a summary and some new results concerning bounds among some important probability metrics/distances that are used by statisticians and probabilists. Knowledge of other metrics can prov ..."
Abstract

Cited by 83 (2 self)
 Add to MetaCart
Abstract. When studying convergence of measures, an important issue is the choice of probability metric. We provide a summary and some new results concerning bounds among some important probability metrics/distances that are used by statisticians and probabilists. Knowledge of other metrics can provide a means of deriving bounds for another one in an applied problem. Considering other metrics can also provide alternate insights. We also give examples that show that rates of convergence can strongly depend on the metric chosen. Careful consideration is necessary when choosing a metric. Abrégé. Le choix de métrique de probabilité est une décision très importante lorsqu’on étudie la convergence des mesures. Nous vous fournissons avec un sommaire de plusieurs métriques/distances de probabilité couramment utilisées par des statisticiens(nes) at par des probabilistes, ainsi que certains nouveaux résultats qui se rapportent à leurs bornes. Avoir connaissance d’autres métriques peut vous fournir avec un moyen de dériver des bornes pour une autre métrique dans un problème appliqué. Le fait de prendre en considération plusieurs métriques vous permettra d’approcher des problèmes d’une manière différente. Ainsi, nous vous démontrons que les taux de convergence peuvent dépendre de façon importante sur votre choix de métrique. Il est donc important de tout considérer lorsqu’on doit choisir une métrique. 1.
New Insights Into Smile, Mispricing and Value At Risk: The Hyperbolic Model
 Journal of Business
, 1998
"... We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical Black ..."
Abstract

Cited by 80 (7 self)
 Add to MetaCart
We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical BlackScholes model. We study implicit volatilities, the smile effect and the pricing performance. Exploiting the full power of the hyperbolic model, we construct an option value process from a statistical point of view by estimating the implicit riskneutral density function from option data. Finally we present some new valueat risk calculations leading to new perspectives to cope with model risk. I Introduction There is little doubt that the BlackScholes model has become the standard in the finance industry and is applied on a large scale in everyday trading operations. On the other side its deficiencies have become a standard topic in research. Given the vast literature where refinements a...