Results 1 
9 of
9
Abstract versus concrete computation on metric partial algebras
 ACM Transactions on Computational Logic
, 2004
"... Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We pr ..."
Abstract

Cited by 28 (17 self)
 Add to MetaCart
Data types containing infinite data, such as the real numbers, functions, bit streams and waveforms, are modelled by topological manysorted algebras. In the theory of computation on topological algebras there is a considerable gap between socalled abstract and concrete models of computation. We prove theorems that bridge the gap in the case of metric algebras with partial operations. With an abstract model of computation on an algebra, the computations are invariant under isomorphisms and do not depend on any representation of the algebra. Examples of such models are the ‘while ’ programming language and the BCSS model. With a concrete model of computation, the computations depend on the choice of a representation of the algebra and are not invariant under isomorphisms. Usually, the representations are made from the set N of natural numbers, and computability is reduced to classical computability on N. Examples of such models are computability via effective metric spaces, effective domain representations, and type two enumerability. The theory of abstract models is stable: there are many models of computation, and
2007. Computability of simple games: A characterization and application to the core
"... It was shown earlier that the class of algorithmically computable simple games (i) includes the class of games that have finite carriers and (ii) is included in the class of games that have finite winning coalitions. This paper characterizes computable games, strengthens the earlier result that comp ..."
Abstract

Cited by 3 (2 self)
 Add to MetaCart
It was shown earlier that the class of algorithmically computable simple games (i) includes the class of games that have finite carriers and (ii) is included in the class of games that have finite winning coalitions. This paper characterizes computable games, strengthens the earlier result that computable games violate anonymity, and gives examples showing that the above inclusions are strict. It also extends Nakamura’s theorem about the nonemptyness of the core and shows that computable games have a finite Nakamura number, implying that the number of alternatives that the players can deal with rationally is restricted.
Streams, Stream Transformers and Domain Representations
 Prospects for Hardware Foundations, Lecture Notes in Computer Science
, 1998
"... We present a general theory for the computation of stream transformers of the form F: (R B) (T A), where time T and R, and data A and B, are discrete or continuous. We show how methods for representing topological algebras by algebraic domains can be applied to transformations of continuous ..."
Abstract

Cited by 3 (3 self)
 Add to MetaCart
We present a general theory for the computation of stream transformers of the form F: (R B) (T A), where time T and R, and data A and B, are discrete or continuous. We show how methods for representing topological algebras by algebraic domains can be applied to transformations of continuous streams. A stream transformer is continuous in the compactopen topology on continuous streams if and only if it has a continuous lifting to a standard algebraic domain representation of such streams. We also examine the important problem of representing discontinuous streams, such as signals T A, where time T is continuous and data A is discrete.
Fundamentals of Computing I
 Logic, Problem Solving, Programs, & Computers
, 1992
"... on topological spaces via domain representations ..."
Metric Spaces in Synthetic Topology
, 2010
"... We investigate the relationship between the synthetic approach to topology, in which every set is equipped with an intrinsic topology, and constructive theory of metric spaces. We relate the synthetic notion of compactness of Cantor space to Brouwer’s Fan Principle. We show that the intrinsic and me ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We investigate the relationship between the synthetic approach to topology, in which every set is equipped with an intrinsic topology, and constructive theory of metric spaces. We relate the synthetic notion of compactness of Cantor space to Brouwer’s Fan Principle. We show that the intrinsic and metric topologies of complete separable metric spaces coincide if they do so for Baire space. In Russian Constructivism the match between synthetic and metric topology breaks down, as even a very simple complete totally bounded space fails to be compact, and its topology is strictly finer than the metric topology. In contrast, in Brouwer’s intuitionism synthetic and metric notions of topology and compactness agree. 1
12345efghi UNIVERSITY OF WALES SWANSEA REPORT SERIES
"... Computability on topological spaces via domain representations by V StoltenbergHansen and J V Tucker Report # CSR 22007Computability on topological spaces via domain representations ..."
Abstract
 Add to MetaCart
Computability on topological spaces via domain representations by V StoltenbergHansen and J V Tucker Report # CSR 22007Computability on topological spaces via domain representations
Computability and analysis: the legacy of Alan Turing
, 2012
"... For most of its history, mathematics was algorithmic in nature. The geometric claims in Euclid’s Elements fall into two distinct categories: “problems, ” which assert that a construction can be carried out to meet a given specification, and “theorems, ” which assert that some property holds of a par ..."
Abstract
 Add to MetaCart
For most of its history, mathematics was algorithmic in nature. The geometric claims in Euclid’s Elements fall into two distinct categories: “problems, ” which assert that a construction can be carried out to meet a given specification, and “theorems, ” which assert that some property holds of a particular geometric