Results 1  10
of
20
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 369 (17 self)
 Add to MetaCart
Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in publickey cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
A double large prime variation for small genus hyperelliptic index calculus
 Mathematics of Computation
, 2004
"... Abstract. In this article, we examine how the index calculus approach for computing discrete logarithms in small genus hyperelliptic curves can be improved by introducing a double large prime variation. Two algorithms are presented. The first algorithm is a rather natural adaptation of the double la ..."
Abstract

Cited by 51 (10 self)
 Add to MetaCart
Abstract. In this article, we examine how the index calculus approach for computing discrete logarithms in small genus hyperelliptic curves can be improved by introducing a double large prime variation. Two algorithms are presented. The first algorithm is a rather natural adaptation of the double large prime variation to the intended context. On heuristic and experimental grounds, it seems to perform quite well but lacks a complete and precise analysis. Our second algorithm is a considerably simplified variant, which can be analyzed easily. The resulting complexity improves on the fastest known algorithms. Computer experiments show that for hyperelliptic curves of genus three, our first algorithm surpasses Pollard’s Rho method even for rather small field sizes. 1.
Arithmetic On Superelliptic Curves
 Math. Comp
, 2000
"... This paper is concerned with algorithms for computing in the divisor class group of a nonsingular plane curve of the form y n = c(x) which has only one point at infinity. Divisors are represented as ideals and an ideal reduction algorithm based on lattice reduction is given. We obtain a unique repre ..."
Abstract

Cited by 37 (4 self)
 Add to MetaCart
This paper is concerned with algorithms for computing in the divisor class group of a nonsingular plane curve of the form y n = c(x) which has only one point at infinity. Divisors are represented as ideals and an ideal reduction algorithm based on lattice reduction is given. We obtain a unique representative for each divisor class and the algorithms for addition and reduction of divisors run in polynomial time. An algorithm is also given for solving the discrete logarithm problem when the curve is defined over a finite field.
Computing RiemannRoch spaces in algebraic function fields and related topics
, 2001
"... this paper we develop a simple and efficient algorithm for the computation of RiemannRoch spaces to be counted among the arithmetic methods. The algorithm completely avoids series expansions and resulting complications, and instead relies on integral closures and their ideals only. It works for any ..."
Abstract

Cited by 21 (0 self)
 Add to MetaCart
this paper we develop a simple and efficient algorithm for the computation of RiemannRoch spaces to be counted among the arithmetic methods. The algorithm completely avoids series expansions and resulting complications, and instead relies on integral closures and their ideals only. It works for any "computable" constant field k of any characteristic as long as the required integral closures can be computed, and does not involve constant field extensions
Computational Aspects of Curves of Genus at Least 2
 Algorithmic number theory. 5th international symposium. ANTSII
, 1996
"... . This survey discusses algorithms and explicit calculations for curves of genus at least 2 and their Jacobians, mainly over number fields and finite fields. Miscellaneous examples and a list of possible future projects are given at the end. 1. Introduction An enormous number of people have per ..."
Abstract

Cited by 14 (3 self)
 Add to MetaCart
. This survey discusses algorithms and explicit calculations for curves of genus at least 2 and their Jacobians, mainly over number fields and finite fields. Miscellaneous examples and a list of possible future projects are given at the end. 1. Introduction An enormous number of people have performed an enormous number of computations on elliptic curves, as one can see from even a perfunctory glance at [29]. A few years ago, the same could not be said for curves of higher genus, even though the theory of such curves had been developed in detail. Now, however, polynomialtime algorithms and sometimes actual programs are available for solving a wide variety of problems associated with such curves. The genus 2 case especially is becoming accessible: in light of recent work, it seems reasonable to expect that within a few years, packages will be available for doing genus 2 computations analogous to the elliptic curve computations that are currently possible in PARI, MAGMA, SIMATH, apec...
Asymptotically fast group operations on Jacobians of general curves
 Mathematics of Computation
, 2007
"... Abstract. Let C be a curve of genus g over a field k. We describe probabilistic algorithms for addition and inversion of the classes of rational divisors in the Jacobian of C. After a precomputation, which is done only once for the curve C, the algorithms use only linear algebra in vector spaces of ..."
Abstract

Cited by 11 (1 self)
 Add to MetaCart
Abstract. Let C be a curve of genus g over a field k. We describe probabilistic algorithms for addition and inversion of the classes of rational divisors in the Jacobian of C. After a precomputation, which is done only once for the curve C, the algorithms use only linear algebra in vector spaces of dimension at most O(g log g), and so take O(g 3+ɛ) field operations in k, using Gaussian elimination. Using fast algorithms for the linear algebra, one can improve this time to O(g 2.376). This represents a significant improvement over the previous record of O(g 4) field operations (also after a precomputation) for general curves of genus g. 1.
Quantum computation of zeta functions of curves
 Computational Complexity
"... We exhibit a quantum algorithm for determining the zeta function of a genus g curve over a finite field Fq, which is polynomial in g and log(q). This amounts to giving an algorithm to produce provably random elements of the class group of a curve, plus a recipe for recovering a Weil polynomial from ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
We exhibit a quantum algorithm for determining the zeta function of a genus g curve over a finite field Fq, which is polynomial in g and log(q). This amounts to giving an algorithm to produce provably random elements of the class group of a curve, plus a recipe for recovering a Weil polynomial from enough of its cyclic resultants. The latter effectivizes a result of Fried in a restricted setting. 1
Finding a Basis of a Linear System with Pairwise Distinct Discrete Valuations on an Algebraic Curve
 J. SYMBOLIC COMP
, 2000
"... ..."