Results 1  10
of
29
Learning Bayesian networks: The combination of knowledge and statistical data
 Machine Learning
, 1995
"... We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simpl ..."
Abstract

Cited by 905 (34 self)
 Add to MetaCart
We describe scoring metrics for learning Bayesian networks from a combination of user knowledge and statistical data. We identify two important properties of metrics, which we call event equivalence and parameter modularity. These properties have been mostly ignored, but when combined, greatly simplify the encoding of a user’s prior knowledge. In particular, a user can express his knowledge—for the most part—as a single prior Bayesian network for the domain. 1
The NPcompleteness column: an ongoing guide
 Journal of Algorithms
, 1985
"... This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co ..."
Abstract

Cited by 189 (0 self)
 Add to MetaCart
This is the nineteenth edition of a (usually) quarterly column that covers new developments in the theory of NPcompleteness. The presentation is modeled on that used by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NPCompleteness,’ ’ W. H. Freeman & Co., New York, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed, and, when appropriate, crossreferences will be given to that book and the list of problems (NPcomplete and harder) presented there. Readers who have results they would like mentioned (NPhardness, PSPACEhardness, polynomialtimesolvability, etc.) or open problems they would like publicized, should
A Randomized LinearTime Algorithm to Find Minimum Spanning Trees
, 1994
"... We present a randomized lineartime algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered lineartime algorithm for verifying a minimum spanning tree. Our computational model is a unitcost ra ..."
Abstract

Cited by 116 (7 self)
 Add to MetaCart
We present a randomized lineartime algorithm to find a minimum spanning tree in a connected graph with edge weights. The algorithm uses random sampling in combination with a recently discovered lineartime algorithm for verifying a minimum spanning tree. Our computational model is a unitcost randomaccess machine with the restriction that the only operations allowed on edge weights are binary comparisons.
Faster scaling algorithms for general graphmatching problems
 JOURNAL OF THE ACM
, 1991
"... An algorithm for minimumcost matching on a general graph with integral edge costs is presented. The algorithm runs in time close to the fastest known bound for maximumcardinality matching. Specifically, let n, m, and N denote the number of vertices, number of edges, and largest magnitude of a cost ..."
Abstract

Cited by 86 (2 self)
 Add to MetaCart
An algorithm for minimumcost matching on a general graph with integral edge costs is presented. The algorithm runs in time close to the fastest known bound for maximumcardinality matching. Specifically, let n, m, and N denote the number of vertices, number of edges, and largest magnitude of a cost, respectively. The best known time bound for maximumcardinal ity matching M 0 ( Am). The new algorithm for minimumcost matching has time bound 0 ( in a ( m, n)Iog n m log ( nN)). A slight modification of the new algorithm finds a maximumcardinality matching in 0 ( fire) time. Other applications of the new algorlthm are given, mchrding an efficient implementation of Christofides ’ traveling salesman approximation algorithm and efficient solutions to update problems that require the linear programming duals for matching.
Computing MinimumWeight Perfect Matchings
 INFORMS
, 1999
"... We make several observations on the implementation of Edmonds’ blossom algorithm for solving minimumweight perfectmatching problems and we present computational results for geometric problem instances ranging in size from 1,000 nodes up to 5,000,000 nodes. A key feature in our implementation is the ..."
Abstract

Cited by 83 (2 self)
 Add to MetaCart
We make several observations on the implementation of Edmonds’ blossom algorithm for solving minimumweight perfectmatching problems and we present computational results for geometric problem instances ranging in size from 1,000 nodes up to 5,000,000 nodes. A key feature in our implementation is the use of multiple search trees with an individual dualchange � for each tree. As a benchmark of the algorithm’s performance, solving a 100,000node geometric instance on a 200 Mhz PentiumPro computer takes approximately 3 minutes.
On the Editing Distance between Undirected Acyclic Graphs
, 1995
"... We consider the problem of comparing CUAL graphs (Connected, Undirected, Acyclic graphs with nodes being Labeled). This problem is motivated by the study of information retrieval for biochemical and molecular databases. Suppose we define the distance between two CUAL graphs G1 and G2 to be the weig ..."
Abstract

Cited by 75 (7 self)
 Add to MetaCart
We consider the problem of comparing CUAL graphs (Connected, Undirected, Acyclic graphs with nodes being Labeled). This problem is motivated by the study of information retrieval for biochemical and molecular databases. Suppose we define the distance between two CUAL graphs G1 and G2 to be the weighted number of edit operations (insert node, delete node and relabel node) to transform G1 to G2. By reduction from exact cover by 3sets, one can show that finding the distance between two CUAL graphs is NPcomplete. In view of the hardness of the problem, we propose a constrained distance metric, called the degree2 distance, by requiring that any node to be inserted (deleted) have no more than 2 neighbors. With this metric, we present an efficient algorithm to solve the problem. The algorithm runs in time O(N_1 N_2 D²) for general weighting edit operations and in time O(N_1 N_2 D √D log D) for integral weighting edit operations, where N_i, i = 1, 2, is the number of nodes in G_i, D = min{d_1, d_2} and d_i is the maximum degree of G_i.
Scaling Algorithms for Network Problems
, 1985
"... This paper gives algorithms for network problems that work by scaling the numeric parameters. Assume all parameters are integers. Let n, m, and N denote the number of vertices, number of edges, and largest parameter of the network, respectively. A scaling algorithm for maximum weight matching on a b ..."
Abstract

Cited by 60 (2 self)
 Add to MetaCart
This paper gives algorithms for network problems that work by scaling the numeric parameters. Assume all parameters are integers. Let n, m, and N denote the number of vertices, number of edges, and largest parameter of the network, respectively. A scaling algorithm for maximum weight matching on a bipartite graph runs in O(n3 % log N) time. For appropriate N this improves the traditional Hungarian method, whose most efftcient implementation is O(n(m + n log n)). The speedup results from finding augmenting paths in batches. The matching algorithm gives similar improvements for the following problems: singlesource shortest paths for arbitrary edge lengths (Bellman’s algorithm); maximum weight degreeconstrained subgraph; minimum cost flow on a cl network. Scaling gives a simple maximum value flow algorithm that matches the best known bound (Sleator and Tarjan’s algorithm) when log N = O(log n). Scaling also gives a good algorithm for shortest paths on a directed graph with nonnegative edge lengths (Dijkstra’s algorithm).
A Parallel Algorithm for Computing Minimum Spanning Trees
, 1992
"... We present a simple and implementable algorithm that computes a minimum spanning tree of an undirected weighted graph G = (V, E) of n = V vertices and m = E edges on an EREW PRAM in O(log 3=2 n) time using n+m processors. This represents a substantial improvement in the running time over the ..."
Abstract

Cited by 30 (3 self)
 Add to MetaCart
We present a simple and implementable algorithm that computes a minimum spanning tree of an undirected weighted graph G = (V, E) of n = V vertices and m = E edges on an EREW PRAM in O(log 3=2 n) time using n+m processors. This represents a substantial improvement in the running time over the previous results for this problem using at the same time the weakest of the PRAM models. It also implies the existence of algorithms having the same complexity bounds for the EREW PRAM, for connectivity, ear decomposition, biconnectivity, strong orientation, stnumbering and Euler tours problems.
Finding Patterns in Three Dimensional Graphs: Algorithms and Applications to Scientific Data Mining
 IEEE Transactions on Knowledge and Data Engineering
, 2002
"... This paper presents a method for finding patterns in three dimensional (3D) graphs. Each node in a graph is an undecomposable or atomic unit and has a label. Edges are links between the atomic units. Patterns are rigid substructures that may occur in a graph after allowing for an arbitrary number ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
This paper presents a method for finding patterns in three dimensional (3D) graphs. Each node in a graph is an undecomposable or atomic unit and has a label. Edges are links between the atomic units. Patterns are rigid substructures that may occur in a graph after allowing for an arbitrary number of wholestructure rotations and translations as well as a small number (specified by the user) of edit operations in the patterns or in the graph. (When a pattern appears in a graph only after the graph has been modified, we call that appearance "approximate occurrence.") The edit operations include relabeling a node, deleting a node and inserting a node. The proposed method is based on the geometric hashing technique, which hashes nodetriplets of the graphs into a 3D table and compresses the labeltriplets in the table. To demonstrate the utility of our algorithms, we discuss two applications of them in scientific data mining.
A Linear Time Approximation Algorithm for Weighted Matchings in Graphs
, 2003
"... Approximation algorithms have so far mainly been studied for problems that are not known to have polynomial time algorithms for solving them exactly. Here we propose an approximation algorithm for the weighted matching problem in graphs which can be solved in polynomial time. The weighted matching p ..."
Abstract

Cited by 18 (3 self)
 Add to MetaCart
Approximation algorithms have so far mainly been studied for problems that are not known to have polynomial time algorithms for solving them exactly. Here we propose an approximation algorithm for the weighted matching problem in graphs which can be solved in polynomial time. The weighted matching problem is to find a matching in an edge weighted graph that has maximum weight. The first polynomial time algorithm for this problem was given by Edmonds in 1965. The fastest known algorithm for the weighted matching problem has a running time of O(nm+n 2 log n). Many real world problems require graphs of such large size that this running time is too costly. Therefore there is considerable need for faster approximation algorithms for the weighted matching problem. We present a linear time approximation algorithm for the weighted matching problem with a performance ratio arbitrarily close to 2/3