Results 1 
6 of
6
SNOPT: An SQP Algorithm For LargeScale Constrained Optimization
, 2002
"... Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first deriv ..."
Abstract

Cited by 535 (23 self)
 Add to MetaCart
Sequential quadratic programming (SQP) methods have proved highly effective for solving constrained optimization problems with smooth nonlinear functions in the objective and constraints. Here we consider problems with general inequality constraints (linear and nonlinear). We assume that first derivatives are available, and that the constraint gradients are sparse. We discuss
User's Guide For SNOPT 5.3: A Fortran Package For LargeScale Nonlinear Programming
, 1999
"... SNOPT is a generalpurpose system for solving optimization problems involving many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming ..."
Abstract

Cited by 93 (2 self)
 Add to MetaCart
(Show Context)
SNOPT is a generalpurpose system for solving optimization problems involving many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming and for linearly constrained optimization, as well as for general nonlinear programs. SNOPT finds solutions that are locally optimal , and ideally any nonlinear functions should be smooth and users should provide gradients. It is often more widely useful. For example, local optima are often global solutions, and discontinuities in the function gradients can often be tolerated if they are not too close to an optimum. Unknown gradients are estimated by finite differences. SNOPT uses a sequential quadratic programming (SQP) algorithm that obtains search directions from a sequence of quadratic programming subproblems. Each QP subproblem minimizes a quadratic model of a certain Lagrangian function subject to a linearization of the constraints. An augmented Lagrangian merit function is reduced along each search direction to ensure convergence from any starting point. SNOPT is most efficient if only some of the variables enter nonlinearly, or if the number of active constraints (including simple bounds) is nearly as large as the number of variables. SNOPT requires relatively few evaluations of the problem functions. Hence it is especially effective if the objective or constraint functions (and their gradients) are expensive to evaluate. The source code for SNOPT is suitable for any machine with a Fortran compiler. SNOPT may be called from a driver program (typically in Fortran, C or MATLAB). SNOPT can also be used as a standalone package, reading data in the MPS ...
Users Guide to SNOPT Version 6: A Fortran Package for LargeScale Nonlinear Programming
, 2002
"... SNOPT is a generalpurpose system for solving optimization problems involving many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming and ..."
Abstract

Cited by 8 (0 self)
 Add to MetaCart
(Show Context)
SNOPT is a generalpurpose system for solving optimization problems involving many variables and constraints. It minimizes a linear or nonlinear function subject to bounds on the variables and sparse linear or nonlinear constraints. It is suitable for largescale linear and quadratic programming and for linearly constrained optimization, as well as for general nonlinear programs. SNOPT finds solutions that are locally optimal, and ideally any nonlinear functions should be smooth and users should provide gradients. It is often more widely useful. For example, local optima are often global solutions, and discontinuities in the function gradients can often be tolerated if they are not too close to an optimum. Unknown gradients are estimated by finite differences. SNOPT uses a sequential quadratic programming (SQP) algorithm that obtains search directions from a sequence of quadratic programming subproblems. Each QP subproblem minimizes a quadratic model of a certain Lagrangian function subject to a linearization of the constraints. An augmented Lagrangian merit function is reduced
HESSIANFREE METHODS FOR CHECKING THE SECONDORDER SUFFICIENT CONDITIONS IN EQUALITYCONSTRAINED OPTIMIZATION AND EQUILIBRIUM PROBLEMS
"... Abstract. Verifying the SecondOrder Sufficient Condition (SOSC), thus ensuring a stationary point locally minimizes a given objective function (subject to certain constraints), is an essential component of nonconvex computational optimization and equilibrium programming. This article proposes th ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract. Verifying the SecondOrder Sufficient Condition (SOSC), thus ensuring a stationary point locally minimizes a given objective function (subject to certain constraints), is an essential component of nonconvex computational optimization and equilibrium programming. This article proposes three new “Hessianfree ” tests of the SOSC that can be implemented efficiently with gradient evaluations alone and reveal feasible directions of negative curvature when the SOSC fails. The Bordered Hessian Test and a Matrix Inertia test, two classical tests of the SOSC, require explicit knowledge of the Hessian of the Lagrangian and do not reveal feasible directions of negative curvature should the SOSC fail. Computational comparisons of the new methods with classical tests demonstrate the relative efficiency of these new algorithms and the need for careful study of false negatives resulting from accumulation of roundoff errors. 1.