Results 1  10
of
66
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming
 Journal of the ACM
, 1995
"... We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution ..."
Abstract

Cited by 958 (14 self)
 Add to MetaCart
We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least .87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of ...
An InteriorPoint Method for Semidefinite Programming
, 2005
"... We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other appli ..."
Abstract

Cited by 207 (17 self)
 Add to MetaCart
We propose a new interior point based method to minimize a linear function of a matrix variable subject to linear equality and inequality constraints over the set of positive semidefinite matrices. We show that the approach is very efficient for graph bisection problems, such as maxcut. Other applications include maxmin eigenvalue problems and relaxations for the stable set problem.
Approximate graph coloring by semidefinite programming
 Proc. 35 th IEEE FOCS, IEEE
, 1994
"... a coloring is called the chromatic number of�, and is usually denoted by��.Determining the chromatic number of a graph is known to be NPhard (cf. [19]). Besides its theoretical significance as a canonical NPhard problem, graph coloring arises naturally in a variety of applications such as register ..."
Abstract

Cited by 180 (7 self)
 Add to MetaCart
a coloring is called the chromatic number of�, and is usually denoted by��.Determining the chromatic number of a graph is known to be NPhard (cf. [19]). Besides its theoretical significance as a canonical NPhard problem, graph coloring arises naturally in a variety of applications such as register allocation [11, 12, 13] is the maximum degree of any vertex. Beand timetable/examination scheduling [8, 40]. In many We consider the problem of coloring�colorable graphs with the fewest possible colors. We give a randomized polynomial time algorithm which colors a 3colorable graph on vertices with� � ���� colors where sides giving the best known approximation ratio in terms of, this marks the first nontrivial approximation result as a function of the maximum degree. This result can be generalized to�colorable graphs to obtain a coloring using�� � ��� � � � �colors. Our results are inspired by the recent work of Goemans and Williamson who used an algorithm for semidefinite optimization problems, which generalize linear programs, to obtain improved approximations for the MAX CUT and MAX 2SAT problems. An intriguing outcome of our work is a duality relationship established between the value of the optimum solution to our semidefinite program and the Lovász�function. We show lower bounds on the gap between the optimum solution of our semidefinite program and the actual chromatic number; by duality this also demonstrates interesting new facts about the�function. 1
Polynomial Time Approximation Schemes for Dense Instances of NPHard Problems
, 1995
"... We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiability. By d ..."
Abstract

Cited by 174 (28 self)
 Add to MetaCart
We present a unified framework for designing polynomial time approximation schemes (PTASs) for "dense" instances of many NPhard optimization problems, including maximum cut, graph bisection, graph separation, minimum kway cut with and without specified terminals, and maximum 3satisfiability. By dense graphs we mean graphs with minimum degree Ω(n), although our algorithms solve most of these problems so long as the average degree is Ω(n). Denseness for nongraph problems is defined similarly. The unified framework begins with the idea of exhaustive sampling: picking a small random set of vertices, guessing where they go on the optimum solution, and then using their placement to determine the placement of everything else. The approach then develops into a PTAS for approximating certain smooth integer programs where the objective function and the constraints are "dense" polynomials of constant degree.
Improvements To Propositional Satisfiability Search Algorithms
, 1995
"... ... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable ..."
Abstract

Cited by 161 (0 self)
 Add to MetaCart
... quickly across a wide range of hard SAT problems than any other SAT tester in the literature on comparable platforms. On a Sun SPARCStation 10 running SunOS 4.1.3 U1, POSIT can solve hard random 400variable 3SAT problems in about 2 hours on the average. In general, it can solve hard nvariable random 3SAT problems with search trees of size O(2 n=18:7 ). In addition to justifying these claims, this dissertation describes the most significant achievements of other researchers in this area, and discusses all of the widely known general techniques for speeding up SAT search algorithms. It should be useful to anyone interested in NPcomplete problems or combinatorial optimization in general, and it should be particularly useful to researchers in either Artificial Intelligence or Operations Research.
Spectral Partitioning Works: Planar graphs and finite element meshes
 In IEEE Symposium on Foundations of Computer Science
, 1996
"... Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extr ..."
Abstract

Cited by 144 (8 self)
 Add to MetaCart
Spectral partitioning methods use the Fiedler vectorthe eigenvector of the secondsmallest eigenvalue of the Laplacian matrixto find a small separator of a graph. These methods are important components of many scientific numerical algorithms and have been demonstrated by experiment to work extremely well. In this paper, we show that spectral partitioning methods work well on boundeddegree planar graphs and finite element meshes the classes of graphs to which they are usually applied. While naive spectral bisection does not necessarily work, we prove that spectral partitioning techniques can be used to produce separators whose ratio of vertices removed to edges cut is O( p n) for boundeddegree planar graphs and twodimensional meshes and O i n 1=d j for wellshaped ddimensional meshes. The heart of our analysis is an upper bound on the secondsmallest eigenvalues of the Laplacian matrices of these graphs. 1. Introduction Spectral partitioning has become one of the mos...
Approximating the value of two prover proof systems, with applications to MAX 2SAT and MAX DICUT
 IN PROCEEDINGS OF THE THIRD ISRAEL SYMPOSIUM ON THEORY OF COMPUTING AND SYSTEMS
, 1995
"... It is well known that two prover proof systems are a convenient tool for establishing hardness of approximation results. In this paper, we show that two prover proof systems are also convenient starting points for establishing easiness of approximation results. Our approach combines the FeageLovdsz ..."
Abstract

Cited by 131 (9 self)
 Add to MetaCart
It is well known that two prover proof systems are a convenient tool for establishing hardness of approximation results. In this paper, we show that two prover proof systems are also convenient starting points for establishing easiness of approximation results. Our approach combines the FeageLovdsz (STOC92) semidefinite programming relaxation of oneround twoprover proof systems, together with rounding techniques for the solutions of semidefinite progmms, as introduced by Goemans and Williamson (STO C94). As a consequence of our approach, we present improved approximation algorithms for MAX 2SAT and MAX DICUT. The algorithms are guamnteed to deliver solutions within a factor of 0.931 of the optimum for MAX 2SAT and within a factor of 0.859 for MAX DICUT, improving upon the guarantees of 0.878 and 0.796 of Goemans and Williamson.
An O(log k) approximate mincut maxflow theorem and approximation algorithm
 SIAM J. Comput
, 1998
"... Abstract. It is shown that the minimum cut ratio is within a factor of O(log k) of the maximum concurrent flow for kcommodity flow instances with arbitrary capacities and demands. This improves upon the previously bestknown bound of O(log 2 k) and is existentially tight, up to a constant factor. A ..."
Abstract

Cited by 125 (7 self)
 Add to MetaCart
Abstract. It is shown that the minimum cut ratio is within a factor of O(log k) of the maximum concurrent flow for kcommodity flow instances with arbitrary capacities and demands. This improves upon the previously bestknown bound of O(log 2 k) and is existentially tight, up to a constant factor. An algorithm for finding a cut with ratio within a factor of O(log k) of the maximum concurrent flow, and thus of the optimal mincut ratio, is presented.
THE PRIMALDUAL METHOD FOR APPROXIMATION ALGORITHMS AND ITS APPLICATION TO NETWORK DESIGN PROBLEMS
"... The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent researc ..."
Abstract

Cited by 123 (7 self)
 Add to MetaCart
The primaldual method is a standard tool in the design of algorithms for combinatorial optimization problems. This chapter shows how the primaldual method can be modified to provide good approximation algorithms for a wide variety of NPhard problems. We concentrate on results from recent research applying the primaldual method to problems in network design.