Results 11  20
of
73
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
Reasoning about local variables with operationallybased logical relations
 In LICS
, 1996
"... A parametric logical relation between the phrases of an Algollike language is presented. Its definition involves the structural operational semantics of the language, but was inspired by recent denotationallybased work of O’Hearn and Reynolds on translating Algol into a predicatively polymorphic l ..."
Abstract

Cited by 32 (3 self)
 Add to MetaCart
A parametric logical relation between the phrases of an Algollike language is presented. Its definition involves the structural operational semantics of the language, but was inspired by recent denotationallybased work of O’Hearn and Reynolds on translating Algol into a predicatively polymorphic linear lambda calculus. The logical relation yields an applicative characterisation of contextual equivalence for the language and provides a useful (and complete) method for proving equivalences. Its utility is illustrated by giving simple and direct proofs of some contextual equivalences, including an interesting equivalence due to O’Hearn which hinges upon the undefinability of ‘snapback ’ operations (and which goes beyond the standard suite of ‘MeyerSieber ’ examples). Whilst some of the mathematical intricacies of denotational semantics are avoided, the hard work in this operational approach lies in establishing the ‘fundamental property’ for the logical relation—the proof of which makes use of a compactness property of fixpoint recursion with respect to evaluation of phrases. But once this property has been established, the logical relation provides a verification method with an attractively low mathematical overhead. 1.
A Functional Theory of Local Names
, 1994
"... ## is an extension of the #calculus with a binding construct for local names. The extension has properties analogous to classical #calculus and preserves all observational equivalences of #. It is useful as a basis for modeling widespectrum languages that build on a functional core. 1 Introducti ..."
Abstract

Cited by 31 (2 self)
 Add to MetaCart
## is an extension of the #calculus with a binding construct for local names. The extension has properties analogous to classical #calculus and preserves all observational equivalences of #. It is useful as a basis for modeling widespectrum languages that build on a functional core. 1 Introduction Recentyears have given us a good deal of theoretical research on the interaction of imperative programming #exempli#ed byvariable assignment# and functional programming #exempli#ed by higher order functions# #3,6,19,21, 24#. The common method of all these works is to propose a #calculus extended with imperative features and to carry out an exploration of the operational semantics of the new calculus. Based on our own experience in devising such an extended # calculus #13#, the presentwork singles out the name, whose only observational property is its identity, as an essential componentofany such extension. We present a simple extension of the pure #calculus with names; we showby ex...
Imperative selfadjusting computation
 In POPL ’08: Proceedings of the 35th annual ACM SIGPLANSIGACT symposium on Principles of programming languages
, 2008
"... Recent work on selfadjusting computation showed how to systematically write programs that respond efficiently to incremental changes in their inputs. The idea is to represent changeable data using modifiable references, i.e., a special data structure that keeps track of dependencies between read an ..."
Abstract

Cited by 27 (16 self)
 Add to MetaCart
Recent work on selfadjusting computation showed how to systematically write programs that respond efficiently to incremental changes in their inputs. The idea is to represent changeable data using modifiable references, i.e., a special data structure that keeps track of dependencies between read and writeoperations, and to let computations construct traces that later, after changes have occurred, can drive a change propagation algorithm. The approach has been shown to be effective for a variety of algorithmic problems, including some for which adhoc solutions had previously remained elusive. All previous work on selfadjusting computation, however, relied on a purely functional programming model. In this paper, we show that it is possible to remove this limitation and support modifiable references that can be written multiple times. We formalize this using a language AIL for which we define evaluation and changepropagation semantics. AIL closely resembles a traditional higherorder imperative programming language. For AIL we state and prove consistency, i.e., the property that although the semantics is inherently nondeterministic, different evaluation paths will still give observationally equivalent results. In the imperative setting where pointer graphs in the store can form cycles, our previous proof techniques do not apply. Instead, we make use of a novel form of a stepindexed logical relation that handles modifiable references. We show that AIL can be realized efficiently by describing implementation strategies whose overhead is provably constanttime per primitive. When the number of reads and writes per modifiable is bounded by a constant, we can show that change propagation becomes as efficient as it was in the pure case. The general case incurs a slowdown that is logarithmic in the maximum number of such operations. We use DFS and related algorithms on graphs as our running examples and prove that they respond to insertions and deletions of edges efficiently. 1.
Notes on Sconing and Relators
, 1993
"... This paper describes a semantics of typed lambda calculi based on relations. The main mathematical tool is a categorytheoretic method of sconing, also called glueing or Freyd covers. Its correspondence to logical relations is also examined. 1 Introduction Many modern programming languages feature ..."
Abstract

Cited by 24 (0 self)
 Add to MetaCart
This paper describes a semantics of typed lambda calculi based on relations. The main mathematical tool is a categorytheoretic method of sconing, also called glueing or Freyd covers. Its correspondence to logical relations is also examined. 1 Introduction Many modern programming languages feature rather sophisticated typing mechanisms. In particular, languages such as ML include polymorphic data types, which allow considerable programming flexibility. Several notions of polymorphism were introduced into computer science by Strachey [Str67], among them the important notion of parametric polymorphism. Strachey's intuitive definition is that a polymorphic function is parametric if it has a uniformly given algorithm in all types, that is, if the function's behavior is independent of the type at which the function is instantiated. Reynolds [Rey83] proposed a mathematical definition of parametric polymorphic functions by means of invariance with respect to certain relations induced by typ...
A Theory of Recursive Domains with Applications to Concurrency
 In Proc. of LICS ’98
, 1997
"... Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains. ..."
Abstract

Cited by 23 (14 self)
 Add to MetaCart
Marcelo Fiore , Glynn Winskel (1) BRICS , University of Aarhus, Denmark (2) LFCS, University of Edinburgh, Scotland December 1997 Abstract We develop a 2categorical theory for recursively defined domains.
Correctness of Data Representations involving Heap Data Structures
 Science of Computer Programming
, 2003
"... While the semantics of local variables in programming languages is by now wellunderstood, the semantics of pointeraddressed heap variables is still an outstanding issue. In particular, the commonly assumed relational reasoning principles for data representations have not been validated in a se ..."
Abstract

Cited by 23 (8 self)
 Add to MetaCart
While the semantics of local variables in programming languages is by now wellunderstood, the semantics of pointeraddressed heap variables is still an outstanding issue. In particular, the commonly assumed relational reasoning principles for data representations have not been validated in a semantic model of heap variables. In this paper, we de ne a parametricity semantics for a Pascallike language with pointers and heap variables which gives such reasoning principles. It is found that the correspondences between data representations are not simply relations between states, but more intricate correspondences that also need to keep track of visible locations whose pointers can be stored and leaked.
Objects and classes in Algollike languages
 Information and Computation
, 2002
"... Many objectoriented languages used in practice descend from Algol. With this motivation, we study the theoretical issues underlying such languages via the theory of Algollike languages. It is shown that the basic framework of this theory extends cleanly and elegantly to the concepts of objects and ..."
Abstract

Cited by 22 (5 self)
 Add to MetaCart
Many objectoriented languages used in practice descend from Algol. With this motivation, we study the theoretical issues underlying such languages via the theory of Algollike languages. It is shown that the basic framework of this theory extends cleanly and elegantly to the concepts of objects and classes. An important idea that comes to light is that classes are abstract data types, whose theory corresponds to that of existential types. Equational and Hoarelike reasoning methods, and relational parametricity provide powerful formal tools for reasoning about Algollike objectoriented programs. 1