Results 11  20
of
1,468
Tabled Evaluation with Delaying for General Logic Programs
, 1996
"... SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evalu ..."
Abstract

Cited by 258 (27 self)
 Add to MetaCart
SLD resolution with negation as finite failure (SLDNF) reflects the procedural interpretation of predicate calculus as a programming language and forms the computational basis for Prolog systems. Despite its advantages for stackbased memory management, SLDNF is often not appropriate for query evaluation for three reasons: a) it may not terminate due to infinite positive recursion; b) it may not terminate due to infinite recursion through negation; c) it may repeatedly evaluate the same literal in a rule body, leading to unacceptable performance. We address three problems fir a goaloriented query evaluation of general logic programs by presenting tabled evaluation with delaying (SLG resolution).
Stable models and an alternative logic programming paradigm
 In The Logic Programming Paradigm: a 25Year Perspective
, 1999
"... In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting ..."
Abstract

Cited by 247 (18 self)
 Add to MetaCart
In this paper we reexamine the place and role of stable model semantics in logic programming and contrast it with a least Herbrand model approach to Horn programs. We demonstrate that inherent features of stable model semantics naturally lead to a logic programming system that offers an interesting alternative to more traditional logic programming styles of Horn logic programming, stratified logic programming and logic programming with wellfounded semantics. The proposed approach is based on the interpretation of program clauses as constraints. In this setting programs do not describe a single intended model, but a family of stable models. These stable models encode solutions to the constraint satisfaction problem described by the program. Our approach imposes restrictions on the syntax of logic programs. In particular, function symbols are eliminated from the language. We argue that the resulting logic programming system is wellattuned to problems in the class NP, has a welldefined domain of applications, and an emerging methodology of programming. We point out that what makes the whole approach viable is recent progress in implementations of algorithms to compute stable models of propositional logic programs. 1
Logic Programming and Negation: A Survey
 JOURNAL OF LOGIC PROGRAMMING
, 1994
"... We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them. ..."
Abstract

Cited by 242 (8 self)
 Add to MetaCart
We survey here various approaches which were proposed to incorporate negation in logic programs. We concentrate on the prooftheoretic and modeltheoretic issues and the relationships between them.
Logic Programming and Knowledge Representation
 Journal of Logic Programming
, 1994
"... In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and sh ..."
Abstract

Cited by 223 (21 self)
 Add to MetaCart
In this paper, we review recent work aimed at the application of declarative logic programming to knowledge representation in artificial intelligence. We consider exten sions of the language of definite logic programs by classical (strong) negation, disjunc tion, and some modal operators and show how each of the added features extends the representational power of the language.
The Alternating Fixpoint of Logic Programs with Negation
, 1995
"... The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative ..."
Abstract

Cited by 208 (2 self)
 Add to MetaCart
The alternating fixpoint of a logic program with negation is defined constructively. The underlying idea is monotonically to build up a set of negative conclusions until the least fixpoint is reached, using a transformation related to the one that defines stable models. From a fixed set of negative conclusions, the positive conclusions follow (without deriving any further negative ones), by traditional Horn clause semantics. The union of positive and negative conclusions is called the alternating xpoint partial model. The name "alternating" was chosen because the transformation runs in two passes; the first pass transforms an underestimate of the set of negative conclusions into an (intermediate) overestimate; the second pass transforms the overestimate into a new underestimate; the composition of the two passes is monotonic. The principal contributions of this work are (1) that the alternating fixpoint partial model is identical to the wellfounded partial model, and (2) that alternating xpoint logic is at least as expressive as xpoint logic on all structures. Also, on finite structures, fixpoint logic is as expressive as alternating fixpoint logic.
OrderSorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations
 Theoretical Computer Science
, 1992
"... This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of pol ..."
Abstract

Cited by 208 (33 self)
 Add to MetaCart
This paper generalizes manysorted algebra (hereafter, MSA) to ordersorted algebra (hereafter, OSA) by allowing a partial ordering relation on the set of sorts. This supports abstract data types with multiple inheritance (in roughly the sense of objectoriented programming), several forms of polymorphism and overloading, partial operations (as total on equationally defined subsorts), exception handling, and an operational semantics based on term rewriting. We give the basic algebraic constructions for OSA, including quotient, image, product and term algebra, and we prove their basic properties, including Quotient, Homomorphism, and Initiality Theorems. The paper's major mathematical results include a notion of OSA deduction, a Completeness Theorem for it, and an OSA Birkhoff Variety Theorem. We also develop conditional OSA, including Initiality, Completeness, and McKinseyMalcev Quasivariety Theorems, and we reduce OSA to (conditional) MSA, which allows lifting many known MSA results to OSA. Retracts, which intuitively are left inverses to subsort inclusions, provide relatively inexpensive runtime error handling. We show that it is safe to add retracts to any OSA signature, in the sense that it gives rise to a conservative extension. A final section compares and contrasts many different approaches to OSA. This paper also includes several examples demonstrating the flexibility and applicability of OSA, including some standard benchmarks like STACK and LIST, as well as a much more substantial example, the number hierarchy from the naturals up to the quaternions.
Context Interchange: New Features and Formalisms for the Intelligent Integration of Information
 ACM TOIS
, 1999
"... The Context Interchange strategy presents a novel perspective for mediated data access in which semantic conflicts among heterogeneous systems are not identified a priori, but are detected and reconciled by a context mediator through comparison of contexts axioms corresponding to the systems engaged ..."
Abstract

Cited by 198 (86 self)
 Add to MetaCart
The Context Interchange strategy presents a novel perspective for mediated data access in which semantic conflicts among heterogeneous systems are not identified a priori, but are detected and reconciled by a context mediator through comparison of contexts axioms corresponding to the systems engaged in data exchange. In this article, we show that queries formulated on shared views, export schema, and shared “ontologies ” can be mediated in the same way using the Context Interchange framework. The proposed framework provides a logicbased objectoriented formalism for representing and reasoning about data semantics in disparate systems, and has been validated in a prototype implementation providing mediated data access to both traditional and webbased information sources. Categories and Subject Descriptors: H.2.4 [Database Management]: Systems—Query processing; H.2.5 [Database Management]: Heterogeneous Databases—Data translation