Results 1  10
of
16
Double categories, 2categories, thin structures and connections
 THEORY APPL. CATEG
, 1999
"... The main result is that two possible structures which may be imposed on an edge symmetric double category, namely a connection pair and a thin structure, are equivalent. A full proof is also given of the theorem of Spencer, that the category of small 2categories is equivalent to the category of edg ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
The main result is that two possible structures which may be imposed on an edge symmetric double category, namely a connection pair and a thin structure, are equivalent. A full proof is also given of the theorem of Spencer, that the category of small 2categories is equivalent to the category of edge symmetric double categories with thin structure.
Cubical Sets And Their Site
 Theory Appl. Categ
, 2003
"... Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site K, corresponding to the (augmented) simplicial site, the category of finite ordinals. We prove here that K has characterisations similar to the classical ones for the simplicia ..."
Abstract

Cited by 25 (3 self)
 Add to MetaCart
(Show Context)
Extended cubical sets (with connections and interchanges) are presheaves on a ground category, the extended cubical site K, corresponding to the (augmented) simplicial site, the category of finite ordinals. We prove here that K has characterisations similar to the classical ones for the simplicial analogue, by generators and relations, or by the existence of a universal symmetric cubical monoid ; in fact, K is the classifying category of a monoidal algebraic theory of such monoids. Analogous results are given for the restricted cubical site I of ordinary cubical sets (just faces and degeneracies) and for the intermediate site J (including connections). We also consider briefly the reversible analogue, !K.
Pasting Schemes for the Monoidal Biclosed Structure on ωCat
, 1995
"... Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on ωcategories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on ωgroupoids. Immediate consequences ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
Using the theory of pasting presentations, developed in chapter 2, I give a detailed description of the tensor product on ωcategories, which extends Gray's tensor product on 2categories and which is closely related to BrownHiggins's tensor product on ωgroupoids. Immediate consequences are a general and uniform definition of higher dimensional lax natural transformations, and a nice and transparent description of the corresponding internal homs. Further consequences will be in the development of a theory for weak ncategories, since both tensor products and lax structures are crucial in this.
Theory and Applications of Crossed Complexes
, 1993
"... ... L are simplicial sets, then there is a strong deformation retraction of the fundamental crossed complex of the cartesian product K \Theta L onto the tensor product of the fundamental crossed complexes of K and L. This satisfies various sideconditions and associativity/interchange laws, as for t ..."
Abstract

Cited by 18 (2 self)
 Add to MetaCart
... L are simplicial sets, then there is a strong deformation retraction of the fundamental crossed complex of the cartesian product K \Theta L onto the tensor product of the fundamental crossed complexes of K and L. This satisfies various sideconditions and associativity/interchange laws, as for the chain complex version. Given simplicial sets K 0 ; : : : ; K r , we discuss the rcube of homotopies induced on (K 0 \Theta : : : \Theta K r ) and show these form a coherent system. We introduce a definition of a double crossed complex, and of the associated total (or codiagonal) crossed complex. We introduce a definition of homotopy colimits of diagrams of crossed complexes. We show that the homotopy colimit of crossed complexes can be expressed as the
Spaces of maps into classifying spaces for equivariant crossed complexes
 Indag. Math. (N.S
, 1997
"... Abstract. The results of a previous paper on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for crossed complexes, using ..."
Abstract

Cited by 16 (7 self)
 Add to MetaCart
Abstract. The results of a previous paper on the equivariant homotopy theory of crossed complexes are generalised from the case of a discrete group to general topological groups. The principal new ingredient necessary for this is an analysis of homotopy coherence theory for crossed complexes, using detailed results on the appropriate Eilenberg–Zilber theory, and of its relation to simplicial homotopy coherence. Again, our results give information not just on the homotopy classification of certain equivariant maps, but also on the weak equivariant homotopy type of the corresponding equivariant function spaces. Mathematics Subject Classifications (2001): 55P91, 55U10, 18G55. Key words: equivariant homotopy theory, classifying space, function space, crossed complex.
Interpretations of Yetter's notion of Gcoloring: simplicial fibre bundles and nonabelian cohomology
, 1995
"... this article, but beware of misprints. A more thorough treatment is given in May, [18]. We will use (standard) notation from [18] wherever possible. The way found initially around the restriction that K had to be reduced in the above loop construction was to take a maximal tree in K and to contract ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
this article, but beware of misprints. A more thorough treatment is given in May, [18]. We will use (standard) notation from [18] wherever possible. The way found initially around the restriction that K had to be reduced in the above loop construction was to take a maximal tree in K and to contract it to a point. In 1984, a groupoid version of the loop group construction was given by Dwyer and Kan, [12]. (Unfortunately the published paper has many misprints and the cleanedup version that we will use was prepared by my student Phil Ehlers as part of his master's dissertation, [13]. Alternatives have been proposed by Joyal and Tierney, and by Moerdijk and Svensson. They end up with simplicial objects in the category of groupoids, whilst the Dwyer  Kan version gives a simplicially enriched groupoid, i.e. a groupoid all of whose Homobjects are simplicial sets. A simplicially enriched groupoid is also a simplicial groupoid (simplicial object in the category of groupoids), but is one whose object of objects is a constant simplicial set.) Let SS denote the category of simplicial sets and SGpds that of simplicially enriched groupoids or as we will often call them, simply, simplicial groupoids. The loop groupoid functor is a functor
Computing homotopy types using crossed ncubes of groups
 in Adams Memorial Symposium on Algebraic Topology
, 1992
"... Dedicated to the memory of Frank Adams ..."
On the Twisted Cobar Construction
 Math. Proc. Cambridge Philos. Soc
, 1997
"... this paper is the extension of this result to the case of twisted coefficients given by ..."
Abstract

Cited by 11 (4 self)
 Add to MetaCart
(Show Context)
this paper is the extension of this result to the case of twisted coefficients given by
Model structures on the category of small double categories, Algebraic and Geometric Topology 8
, 2008
"... Abstract. In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak ..."
Abstract

Cited by 10 (7 self)
 Add to MetaCart
(Show Context)
Abstract. In this paper we obtain several model structures on DblCat, the category of small double categories. Our model structures have three sources. We first transfer across a categorificationnerve adjunction. Secondly, we view double categories as internal categories in Cat and take as our weak equivalences various internal equivalences defined via Grothendieck topologies. Thirdly, DblCat inherits a model structure as a category of algebras over a 2monad. Some of these model structures coincide and the different points of view give us further results about cofibrant replacements and cofibrant objects. As part of this program we give explicit descriptions and discuss properties of free double categories, quotient double categories, colimits of double categories, and several nerves
Freeness Conditions for 2Crossed Modules and Complexes
, 1998
"... Using free simplicial groups, it is shown how to construct a free or totally free 2crossed module on suitable construction data. 2crossed complexes are introduced and similar freeness results for these are discussed. A. M. S. Classication: 18D35 18G30 18G50 18G55. Introduction Crossed modules we ..."
Abstract

Cited by 10 (4 self)
 Add to MetaCart
Using free simplicial groups, it is shown how to construct a free or totally free 2crossed module on suitable construction data. 2crossed complexes are introduced and similar freeness results for these are discussed. A. M. S. Classication: 18D35 18G30 18G50 18G55. Introduction Crossed modules were introduced by Whitehead in [23] with a view to capturing the relationship between 1 and 2 of a space. Homotopy systems (which would now be called free crossed complexes [5] or totally free crossed chain complexes (cf. Baues [3, 4]) were introduced, again by Whitehead, to incorporate the action of 1 on the higher relative homotopy groups of a CWcomplex. They consist of a crossed module at the base and a chain complex of modules over 1 further up. Conduche [9] dened 2crossed modules as a model of connected 3types and showed how to obtain a 2crossed module from a simplicial group. A variant of 2crossed modules are the quadratic modules of Baues [3, 4] and he also denes a not...