Results 1  10
of
164
A closedform solution for options with stochastic volatility with applications to bond and currency options
 Review of Financial Studies
, 1993
"... I use a new technique to derive a closedform solution for the price of a European call option on an asset with stochastic volatility. The model allows arbitrary correlation between volatility and spotasset returns. I introduce stochastic interest rates and show how to apply the model to bond option ..."
Abstract

Cited by 737 (4 self)
 Add to MetaCart
I use a new technique to derive a closedform solution for the price of a European call option on an asset with stochastic volatility. The model allows arbitrary correlation between volatility and spotasset returns. I introduce stochastic interest rates and show how to apply the model to bond options and foreign currency options. Simulations show that correlation between volatility and the spot asset’s price is important for explaining return skewness and strikeprice biases in the BlackScholes (1973) model. The solution technique is based on characteristic functions and can be applied to other problems. Many plaudits have been aptly used to describe Black and Scholes ’ (1973) contribution to option pricing theory. Despite subsequent development of option theory, the original BlackScholes formula for a European call option remains the most successful and widely used application. This formula is particularly useful because it relates the distribution of spot returns I thank Hans Knoch for computational assistance. I am grateful for the suggestions of Hyeng Keun (the referee) and for comments by participants
Bayesian Analysis of Stochastic Volatility Models
, 1994
"... this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH ..."
Abstract

Cited by 383 (20 self)
 Add to MetaCart
this article is to develop new methods for inference and prediction in a simple class of stochastic volatility models in which logarithm of conditional volatility follows an autoregressive (AR) times series model. Unlike the autoregressive conditional heteroscedasticity (ARCH) and gener alized ARCH (GARCH) models [see Bollerslev, Chou, and Kroner (1992) for a survey of ARCH modeling], both the mean and logvolatility equations have separate error terms. The ease of evaluating the ARCH likelihood function and the ability of the ARCH specification to accommodate the timevarying volatility found in many economic time series has fostered an explosion in the use of ARCH models. On the other hand, the likelihood function for stochastic volatility models is difficult to evaluate, and hence these models have had limited empirical application
Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models,” Review of Economic Studies
, 1998
"... ..."
The Variance Gamma Process and Option Pricing.
 European Finance Review
, 1998
"... : A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional par ..."
Abstract

Cited by 203 (27 self)
 Add to MetaCart
: A three parameter stochastic process, termed the variance gamma process, that generalizes Brownian motion is developed as a model for the dynamics of log stock prices. The process is obtained by evaluating Brownian motion with drift at a random time given by a gamma process. The two additional parameters are the drift of the Brownian motion and the volatility of the time change. These additional parameters provide control over the skewness and kurtosis of the return distribution. Closed forms are obtained for the return density and the prices of European options. The statistical and risk neutral densities are estimated for data on the S&P500 Index and the prices of options on this Index. It is observed that the statistical density is symmetric with some kurtosis, while the risk neutral density is negatively skewed with a larger kurtosis. The additional parameters also correct for pricing biases of the Black Scholes model that is a parametric special case of the option pricing model d...
An empirical investigation of continuoustime equity return models
 Journal of Finance
, 2002
"... This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronou ..."
Abstract

Cited by 140 (9 self)
 Add to MetaCart
This paper extends the class of stochastic volatility diffusions for asset returns to encompass Poisson jumps of timevarying intensity. We find that any reasonably descriptive continuoustime model for equityindex returns must allow for discrete jumps as well as stochastic volatility with a pronounced negative relationship between return and volatility innovations. We also find that the dominant empirical characteristics of the return process appear to be priced by the option market. Our analysis indicates a general correspondence between the evidence extracted from daily equityindex returns and the stylized features of the corresponding options market prices. MUCH ASSET AND DERIVATIVE PRICING THEORY is based on diffusion models for primary securities. However, prescriptions for practical applications derived from these models typically produce disappointing results. A possible explanation could be that analytic formulas for pricing and hedging are available for only a limited set of continuoustime representations for asset returns
On the Detection and Estimation of Long Memory in Stochastic Volatility
, 1995
"... Recent studies have suggested that stock markets' volatility has a type of longrange dependence that is not appropriately described by the usual Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential GARCH (EGARCH) models. In this paper, different models for describing ..."
Abstract

Cited by 132 (6 self)
 Add to MetaCart
Recent studies have suggested that stock markets' volatility has a type of longrange dependence that is not appropriately described by the usual Generalized Autoregressive Conditional Heteroskedastic (GARCH) and Exponential GARCH (EGARCH) models. In this paper, different models for describing this longrange dependence are examined and the properties of a LongMemory Stochastic Volatility (LMSV) model, constructed by incorporating an Autoregressive Fractionally Integrated Moving Average (ARFIMA) process in a stochastic volatility scheme, are discussed. Strongly consistent estimators for the parameters of this LMSV model are obtained by maximizing the spectral likelihood. The distribution of the estimators is analyzed by means of a Monte Carlo study. The LMSV is applied to daily stock market returns providing an improved description of the volatility behavior. In order to assess the empirical relevance of this approach, tests for longmemory volatility are described and applied to an e...
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 108 (2 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.
Continuous Record Asymptotics for Rolling Sample Variance Estimators
 Econometrica
, 1996
"... It is widely known that conditional covariances of asset returns change over time. ..."
Abstract

Cited by 91 (0 self)
 Add to MetaCart
It is widely known that conditional covariances of asset returns change over time.