Results 11  20
of
742
The Impact of Jumps in Volatility and Returns
 Journal of Finance
, 2002
"... This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq ..."
Abstract

Cited by 121 (7 self)
 Add to MetaCart
This paper examines a class of continuoustime models with stochastic volatility that incorporate jumps in returns and volatility. We develop a likelihoodbased es timation strategy and provide estimates of model parameters, spot volatility, jump times and jump sizes using S&P 500 and Nasdaq 100 index returns. Estimates of jump times, jump sizes and volatility are particularly useful for identifying the effects of these factors during periods of market stress, such as those in 1987, 1997 and 1998.
A JumpDiffusion Model for Option Pricing
 Management Science
, 2002
"... Brownian motion and normal distribution have been widely used in the Black–Scholes optionpricing framework to model the return of assets. However, two puzzles emerge from many empirical investigations: the leptokurtic feature that the return distribution of assets may have a higher peak and two (as ..."
Abstract

Cited by 117 (3 self)
 Add to MetaCart
Brownian motion and normal distribution have been widely used in the Black–Scholes optionpricing framework to model the return of assets. However, two puzzles emerge from many empirical investigations: the leptokurtic feature that the return distribution of assets may have a higher peak and two (asymmetric) heavier tails than those of the normal distribution, and an empirical phenomenon called “volatility smile ” in option markets. To incorporate both of them and to strike a balance between reality and tractability, this paper proposes, for the purpose of option pricing, a double exponential jumpdiffusion model. In particular, the model is simple enough to produce analytical solutions for a variety of optionpricing problems, including call and put options, interest rate derivatives, and pathdependent options. Equilibrium analysis and a psychological interpretation of the model are also presented.
Do stock prices and volatility jump? Reconciling evidence from spot and option prices
, 2001
"... This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation ..."
Abstract

Cited by 108 (2 self)
 Add to MetaCart
This paper studies the empirical performance of jumpdiffusion models that allow for stochastic volatility and correlated jumps affecting both prices and volatility. The results show that the models in question provide reasonable fit to both option prices and returns data in the insample estimation period. This contrasts previous findings where stochastic volatility paths are found to be too smooth relative to the option implied dynamics. While the models perform well during the high volatility estimation period, they tend to overprice long dated contracts outofsample. This evidence points towards a too simplistic specification of the mean dynamics of volatility.
Stochastic Volatility for Lévy Processes
, 2001
"... Three processes re°ecting persistence of volatility are initially formulated by evaluating three L¶evy processes at a time change given by the integral of a mean reverting square root process. The model for the mean reverting time change is then generalized to include NonGaussian models that are so ..."
Abstract

Cited by 105 (8 self)
 Add to MetaCart
Three processes re°ecting persistence of volatility are initially formulated by evaluating three L¶evy processes at a time change given by the integral of a mean reverting square root process. The model for the mean reverting time change is then generalized to include NonGaussian models that are solutions to OU (OrnsteinUhlenbeck) equations driven by one sided discontinuous L¶evy processes permitting correlation with the stock. Positive stock price processes are obtained by exponentiating and mean correcting these processes, or alternatively by stochastically exponentiating these processes. The characteristic functions for the log price can be used to yield option prices via the fast Fourier transform. In general, mean corrected exponentiation performs better than employing the stochastic exponential. It is observed that the mean corrected exponential model is not a martingale in the ¯ltration in which it is originally de¯ned. This leads us to formulate and investigate the important property of martingale marginals where we seek martingales in altered ¯ltrations consistent with the one dimensional marginal distributions of the level of the process at each future date. 1
The CrossSection of Volatility and Expected Returns
 Journal of Finance
, 2006
"... We especially thank an anonymous referee and Rob Stambaugh, the editor, for helpful suggestions that greatly improved the article. Andrew Ang and Bob Hodrick both acknowledge support from the NSF. ..."
Abstract

Cited by 96 (6 self)
 Add to MetaCart
We especially thank an anonymous referee and Rob Stambaugh, the editor, for helpful suggestions that greatly improved the article. Andrew Ang and Bob Hodrick both acknowledge support from the NSF.
TimeChanged Lévy Processes and Option Pricing
, 2002
"... As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return ..."
Abstract

Cited by 95 (14 self)
 Add to MetaCart
As is well known, the classic BlackScholes option pricing model assumes that returns follow Brownian motion. It is widely recognized that return processes differ from this benchmark in at least three important ways. First, asset prices jump, leading to nonnormal return innovations. Second, return volatilities vary stochastically over time. Third, returns and their volatilities are correlated, often negatively for equities. We propose that timechanged Lévy processes be used to simultaneously address these three facets of the underlying asset return process. We show that our framework encompasses almost all of the models proposed in the option pricing literature. Despite the generality of our approach, we show that it is straightforward to select and test a particular option pricing model through the use of characteristic function technology.
Of Smiles and Smirks: A TermStructure Perspective
 JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS
, 1998
"... An extensive empirical literature in finance has documented not only the presence of anamolies in the BlackScholes model, but also the "termstructures" of these anamolies (for instance, the behavior of the volatility smile or of unconditional returns at different maturities). Theoretical ..."
Abstract

Cited by 83 (3 self)
 Add to MetaCart
An extensive empirical literature in finance has documented not only the presence of anamolies in the BlackScholes model, but also the "termstructures" of these anamolies (for instance, the behavior of the volatility smile or of unconditional returns at different maturities). Theoretical efforts in the literature at addressing these anamolies have largely focussed on two extensions of the BlackScholes model: introducing jumps into the return process, and allowing volatility to be stochastic. This paper employs commonlyused versions of these two classes of models to examine the extent to which the models are theoretically capable of resolving the observed anamolies. We find that each model exhibits some "termstructure" patterns that are fundamentally inconsistent with those observed in the data. As a consequence, neither class of models constitutes an adequate explanation of the empirical evidence, although stochastic volatility models fare better than jumps in this regard.
New Insights Into Smile, Mispricing and Value At Risk: The Hyperbolic Model
 Journal of Business
, 1998
"... We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical Black ..."
Abstract

Cited by 82 (7 self)
 Add to MetaCart
We investigate a new basic model for asset pricing, the hyperbolic model, which allows an almost perfect statistical fit of stock return data. After a brief introduction into the theory supported by an appendix we use also secondary market data to compare the hyperbolic model to the classical BlackScholes model. We study implicit volatilities, the smile effect and the pricing performance. Exploiting the full power of the hyperbolic model, we construct an option value process from a statistical point of view by estimating the implicit riskneutral density function from option data. Finally we present some new valueat risk calculations leading to new perspectives to cope with model risk. I Introduction There is little doubt that the BlackScholes model has become the standard in the finance industry and is applied on a large scale in everyday trading operations. On the other side its deficiencies have become a standard topic in research. Given the vast literature where refinements a...
The Dynamics of Stochastic Volatility: Evidence from Underlying and Option Markets
, 2000
"... This paper proposes and estimates a more general parametric stochastic variance model of equity index returns than has been previously considered using data from both underlying and options markets. The parameters of the model under both the objective and riskneutral measures are estimated simultane ..."
Abstract

Cited by 81 (2 self)
 Add to MetaCart
This paper proposes and estimates a more general parametric stochastic variance model of equity index returns than has been previously considered using data from both underlying and options markets. The parameters of the model under both the objective and riskneutral measures are estimated simultaneously. I conclude that the square root stochastic variance model of Heston (1993) and others is incapable of generating realistic returns behavior and find that the data are more accurately represented by a stochastic variance model in the CEV class or a model that allows the price and variance processes to have a timevarying correlation. Specifically, I find that as the level of market variance increases, the volatility of market variance increases rapidly and the correlation between the price and variance processes becomes substantially more negative. The heightened heteroskedasticity in market variance that results generates realistic crash probabilities and dynamics and causes returns to display values of skewness and kurtosis much more consistent with their sample values. While the model dramatically improves the fit of options prices relative to the square root process, it falls short of explaining the implied volatility smile for shortdated options.