Results 1  10
of
145
Implementing approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations: A manual for the inlaprogram
, 2008
"... Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothingspline models, statespace models, semiparametric regression, spatial and spatiotemp ..."
Abstract

Cited by 293 (20 self)
 Add to MetaCart
Structured additive regression models are perhaps the most commonly used class of models in statistical applications. It includes, among others, (generalised) linear models, (generalised) additive models, smoothingspline models, statespace models, semiparametric regression, spatial and spatiotemporal models, logGaussian Coxprocesses, geostatistical and geoadditive models. In this paper we consider approximate Bayesian inference in a popular subset of structured additive regression models, latent Gaussian models, where the latent field is Gaussian, controlled by a few hyperparameters and with nonGaussian response variables. The posterior marginals are not available in closed form due to the nonGaussian response variables. For such models, Markov chain Monte Carlo methods can be implemented, but they are not without problems, both in terms of convergence and computational time. In some practical applications, the extent of these problems is such that Markov chain Monte Carlo is simply not an appropriate tool for routine analysis. We show that, by using an integrated nested Laplace approximation and its simplified version, we can directly compute very accurate approximations to the posterior marginals. The main benefit of these approximations
Automated Inference and Learning in Modeling Financial Volatility”, Econometric Theory
, 2005
"... This paper uses the SpecifictoGeneral methodological approach that is widely used in science, in which problems with existing theories are resolved as the need arises, to illustrate a number of important developments in the modelling of univariate and multivariate financial volatility. Twenty freq ..."
Abstract

Cited by 135 (99 self)
 Add to MetaCart
This paper uses the SpecifictoGeneral methodological approach that is widely used in science, in which problems with existing theories are resolved as the need arises, to illustrate a number of important developments in the modelling of univariate and multivariate financial volatility. Twenty frequently arising issues in analysing timevarying univariate and multivariate conditional volatility and stochastic volatility are discussed. In view of some of these difficulties, including the number of parameters to be estimated, and the computational complexities associated with multivariate conditional volatility models and both univariate and multivariate stochastic volatility models, automated inference is argued to be unhelpful to modelling in empirical financial econometrics. Some suggestions for future research are also presented. *The author wishes to acknowledge helpful discussions with Manabu Asai, Massimiliano
Nonparametric Specification Testing for ContinuousTime Models with Application to Spot Interest Rates
, 2002
"... ..."
Asymptotic properties of the maximum likelihood estimator in autoregressive models with Markov regime
 ANN. STATIST
, 2004
"... An autoregressive process with Markov regime is an autoregressive process for which the regression function at each time point is given by a nonobservable Markov chain. In this paper we consider the asymptotic properties of the maximum likelihood estimator in a possibly nonstationary process of this ..."
Abstract

Cited by 64 (8 self)
 Add to MetaCart
An autoregressive process with Markov regime is an autoregressive process for which the regression function at each time point is given by a nonobservable Markov chain. In this paper we consider the asymptotic properties of the maximum likelihood estimator in a possibly nonstationary process of this kind for which the hidden state space is compact but not necessarily finite. Consistency and asymptotic normality are shown to follow from uniform exponential forgetting of the initial distribution for the hidden Markov chain conditional on the observations.
On Leverage in a Stochastic Volatility Model
 JOURNAL OF ECONOMETRICS
, 2005
"... This note is concerned with specification for modelling financial leverage effect in the context of stochastic volatility (SV) models. Two alternative specifications coexist in the literature. One is the Euler approximation to the well known continuous time SV model with leverage effect and the o ..."
Abstract

Cited by 56 (13 self)
 Add to MetaCart
This note is concerned with specification for modelling financial leverage effect in the context of stochastic volatility (SV) models. Two alternative specifications coexist in the literature. One is the Euler approximation to the well known continuous time SV model with leverage effect and the other is the discrete time SV model of Jacquier, Polson and Rossi (2004, Journal of Econometrics, forthcoming). Using a Gaussian nonlinear state space form with uncorrelated measurement and transition errors, I show that it is easy to interpret the leverage e#ect in the conventional model whereas it is not clear how to obtain the leverage effect in the model of Jacquier et al. Empirical comparisons of these two models via Bayesian Markov chain Monte Carlo (MCMC) methods reveal that the specification of Jacquier et al is inferior. Simulation experiments are conducted to study the sampling properties of the Bayes MCMC for the conventional model.
Bayesian Multivariate Time Series Methods for Empirical Macroeconomics
, 2009
"... Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as timevarying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus, over ..."
Abstract

Cited by 54 (12 self)
 Add to MetaCart
Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as timevarying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus, overparameterization problems may arise. Bayesian methods have become increasingly popular as a way of overcoming these problems. In this monograph, we discuss VARs, factor augmented VARs and timevarying parameter extensions and show how Bayesian inference proceeds. Apart from the simplest of VARs, Bayesian inference requires the use of Markov chain Monte Carlo methods developed for state space models and we describe these algorithms. The focus is on the empirical macroeconomist and we offer advice on how to use these models and methods in practice and include empirical illustrations. A website provides Matlab code for carrying out Bayesian inference in these models.
Noarbitrage semimartingale restrictions for continuoustime volatility models subject to leveral effects, jumps and i.i.d. noise: Theory and testable distributional implications
 JOURNAL OF ECONOMETRICS
, 2007
"... We develop a sequential procedure to test the adequacy of jumpdiffusion models for return distributions. We rely on intraday data and nonparametric volatility measures, along with a new jump detection technique and appropriate conditional moment tests, for assessing the import of jumps and levera ..."
Abstract

Cited by 54 (9 self)
 Add to MetaCart
We develop a sequential procedure to test the adequacy of jumpdiffusion models for return distributions. We rely on intraday data and nonparametric volatility measures, along with a new jump detection technique and appropriate conditional moment tests, for assessing the import of jumps and leverage effects. A novel robusttojumps approach is utilized to alleviate microstructure frictions for realized volatility estimation. Size and power of the procedure are explored through Monte Carlo methods. Our empirical findings support the jumpdiffusive representation for S&P500 futures returns but reveal
Deviance Information Criterion for Comparing Stochastic Volatility Models
 Journal of Business and Economic Statistics
, 2002
"... Bayesian methods have been efficient in estimating parameters of stochastic volatility models for analyzing financial time series. Recent advances made it possible to fit stochastic volatility models of increasing complexity, including covariates, leverage effects, jump components and heavytailed d ..."
Abstract

Cited by 51 (11 self)
 Add to MetaCart
Bayesian methods have been efficient in estimating parameters of stochastic volatility models for analyzing financial time series. Recent advances made it possible to fit stochastic volatility models of increasing complexity, including covariates, leverage effects, jump components and heavytailed distributions. However, a formal model comparison via Bayes factors remains difficult. The main objective of this paper is to demonstrate that model selection is more easily performed using the deviance information criterion (DIC). It combines a Bayesian measureoffit with a measure of model complexity. We illustrate the performance of DIC in discriminating between various different stochastic volatility models using simulated data and daily returns data on the S&P100 index.
Estimating the integrated likelihood via posterior simulation using the harmonic mean identity
 Bayesian Statistics
, 2007
"... The integrated likelihood (also called the marginal likelihood or the normalizing constant) is a central quantity in Bayesian model selection and model averaging. It is defined as the integral over the parameter space of the likelihood times the prior density. The Bayes factor for model comparison a ..."
Abstract

Cited by 49 (2 self)
 Add to MetaCart
The integrated likelihood (also called the marginal likelihood or the normalizing constant) is a central quantity in Bayesian model selection and model averaging. It is defined as the integral over the parameter space of the likelihood times the prior density. The Bayes factor for model comparison and Bayesian testing is a ratio of integrated likelihoods, and the model weights in Bayesian model averaging are proportional to the integrated likelihoods. We consider the estimation of the integrated likelihood from posterior simulation output, aiming at a generic method that uses only the likelihoods from the posterior simulation iterations. The key is the harmonic mean identity, which says that the reciprocal of the integrated likelihood is equal to the posterior harmonic mean of the likelihood. The simplest estimator based on the identity is thus the harmonic mean of the likelihoods. While this is an unbiased and simulationconsistent estimator, its reciprocal can have infinite variance and so it is unstable in general. We describe two methods for stabilizing the harmonic mean estimator. In the first one, the parameter space is reduced in such a way that the modified estimator involves a harmonic mean of heaviertailed densities, thus resulting in a finite variance estimator. The resulting
Estimation methods for stochastic volatility models: a survey
 Journal of Economic Surveys
, 2004
"... The empirical application of Stochastic Volatility (SV) models has been limited due to the difficulties involved in the evaluation of the likelihood function. However, recently there has been fundamental progress in this area due to the proposal of several new estimation methods that try to overcome ..."
Abstract

Cited by 43 (2 self)
 Add to MetaCart
The empirical application of Stochastic Volatility (SV) models has been limited due to the difficulties involved in the evaluation of the likelihood function. However, recently there has been fundamental progress in this area due to the proposal of several new estimation methods that try to overcome this problem, being at the same time, empirically feasible. As a consequence, several extensions of the SV models have been proposed and their empirical implementation is increasing. In this paper, we review the main estimators of the parameters and the volatility of univariate SV models proposed in the literature. We describe the main advantages and limitations of each of the methods both from the theoretical and empirical point of view. We complete the survey with an application of the most important procedures to the S&P 500 stock price index.