Results 1  10
of
46
Succinct indexable dictionaries with applications to encoding kary trees and multisets
 In Proceedings of the 13th Annual ACMSIAM Symposium on Discrete Algorithms (SODA
"... We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest ele ..."
Abstract

Cited by 193 (7 self)
 Add to MetaCart
We consider the indexable dictionary problem, which consists of storing a set S ⊆ {0,...,m − 1} for some integer m, while supporting the operations of rank(x), which returns the number of elements in S that are less than x if x ∈ S, and −1 otherwise; and select(i) which returns the ith smallest element in S. We give a data structure that supports both operations in O(1) time on the RAM model and requires B(n,m)+ o(n)+O(lg lg m) bits to store a set of size n, where B(n,m) = ⌈ lg ( m) ⌉ n is the minimum number of bits required to store any nelement subset from a universe of size m. Previous dictionaries taking this space only supported (yes/no) membership queries in O(1) time. In the cell probe model we can remove the O(lg lg m) additive term in the space bound, answering a question raised by Fich and Miltersen, and Pagh. We present extensions and applications of our indexable dictionary data structure, including: • an informationtheoretically optimal representation of a kary cardinal tree that supports standard operations in constant time, • a representation of a multiset of size n from {0,...,m − 1} in B(n,m+n) + o(n) bits that supports (appropriate generalizations of) rank and select operations in constant time, and • a representation of a sequence of n nonnegative integers summing up to m in B(n,m + n) + o(n) bits that supports prefix sum queries in constant time. 1
Compressed suffix arrays and suffix trees with applications to text indexing and string matching
, 2005
"... The proliferation of online text, such as found on the World Wide Web and in online databases, motivates the need for spaceefficient text indexing methods that support fast string searching. We model this scenario as follows: Consider a text T consisting of n symbols drawn from a fixed alphabet Σ. ..."
Abstract

Cited by 188 (17 self)
 Add to MetaCart
The proliferation of online text, such as found on the World Wide Web and in online databases, motivates the need for spaceefficient text indexing methods that support fast string searching. We model this scenario as follows: Consider a text T consisting of n symbols drawn from a fixed alphabet Σ. The text T can be represented in n lg Σ  bits by encoding each symbol with lg Σ  bits. The goal is to support fast online queries for searching any string pattern P of m symbols, with T being fully scanned only once, namely, when the index is created at preprocessing time. The text indexing schemes published in the literature are greedy in terms of space usage: they require Ω(n lg n) additional bits of space in the worst case. For example, in the standard unit cost RAM, suffix trees and suffix arrays need Ω(n) memory words, each of Ω(lg n) bits. These indexes are larger than the text itself by a multiplicative factor of Ω(lg Σ  n), which is significant when Σ is of constant size, such as in ascii or unicode. On the other hand, these indexes support fast searching, either in O(m lg Σ) timeorinO(m +lgn) time, plus an outputsensitive cost O(occ) for listing the occ pattern occurrences. We present a new text index that is based upon compressed representations of suffix arrays and suffix trees. It achieves a fast O(m / lg Σ  n +lgɛ Σ  n) search time in the worst case, for any constant
Revocation and Tracing Schemes for Stateless Receivers
, 2001
"... Abstract. We deal with the problem of a center sending a message to a group of users such that some subset of the users is considered revoked and should not be able to obtain the content of the message. We concentrate on the stateless receiver case, where the users do not (necessarily) update their ..."
Abstract

Cited by 177 (4 self)
 Add to MetaCart
Abstract. We deal with the problem of a center sending a message to a group of users such that some subset of the users is considered revoked and should not be able to obtain the content of the message. We concentrate on the stateless receiver case, where the users do not (necessarily) update their state from session to session. We present a framework called the SubsetCover framework, which abstracts a variety of revocation schemes including some previously known ones. We provide sufficient conditions that guarantees the security of a revocation algorithm in this class. We describe two explicit SubsetCover revocation algorithms; these algorithms are very flexible and work for any number of revoked users. The schemes require storage at the receiver of log N and 1 2 log2 N keys respectively (N is the total number of users), and in order to revoke r users the required message lengths are of r log N and 2r keys respectively. We also provide a general traitor tracing mechanism that can be integrated with any SubsetCover revocation scheme that satisfies a “bifurcation property”. This mechanism does not need an a priori bound on the number of traitors and does not expand the message length by much compared to the revocation of the same set of traitors. The main improvements of these methods over previously suggested methods, when adopted to the stateless scenario, are: (1) reducing the message length to O(r) regardless of the coalition size while maintaining a single decryption at the user’s end (2) provide a seamless integration between the revocation and tracing so that the tracing mechanisms does not require any change to the revocation algorithm.
Cuckoo hashing
 JOURNAL OF ALGORITHMS
, 2001
"... We present a simple dictionary with worst case constant lookup time, equaling the theoretical performance of the classic dynamic perfect hashing scheme of Dietzfelbinger et al. (Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994). The space usage is similar to that ..."
Abstract

Cited by 125 (6 self)
 Add to MetaCart
We present a simple dictionary with worst case constant lookup time, equaling the theoretical performance of the classic dynamic perfect hashing scheme of Dietzfelbinger et al. (Dynamic perfect hashing: Upper and lower bounds. SIAM J. Comput., 23(4):738–761, 1994). The space usage is similar to that of binary search trees, i.e., three words per key on average. Besides being conceptually much simpler than previous dynamic dictionaries with worst case constant lookup time, our data structure is interesting in that it does not use perfect hashing, but rather a variant of open addressing where keys can be moved back in their probe sequences. An implementation inspired by our algorithm, but using weaker hash functions, is found to be quite practical. It is competitive with the best known dictionaries having an average case (but no nontrivial worst case) guarantee.
The Bloomier filter: An efficient data structure for static support lookup tables
 in Proc. Symposium on Discrete Algorithms
, 2004
"... “Oh boy, here is another David Nelson” ..."
Routing in Distributed Networks: Overview and Open Problems
 ACM SIGACT News  Distributed Computing Column
, 2001
"... This article focuses on routing messages in distributed networks with efficient data structures. After an overview of the various results of the literature, we point some interestingly open problems. ..."
Abstract

Cited by 49 (12 self)
 Add to MetaCart
This article focuses on routing messages in distributed networks with efficient data structures. After an overview of the various results of the literature, we point some interestingly open problems.
LOW REDUNDANCY IN STATIC DICTIONARIES WITH CONSTANT QUERY TIME
 SIAM J. COMPUT.
, 2001
"... A static dictionary is a data structure storing subsets of a finite universe U, answering membership queries. We show that on a unit cost RAM with word size Θ(log U), a static dictionary for nelement sets with constant worst case query time can be obtained using B +O(log log U)+o(n) (U) bits ..."
Abstract

Cited by 49 (7 self)
 Add to MetaCart
A static dictionary is a data structure storing subsets of a finite universe U, answering membership queries. We show that on a unit cost RAM with word size Θ(log U), a static dictionary for nelement sets with constant worst case query time can be obtained using B +O(log log U)+o(n) (U) bits of storage, where B = ⌈log2 ⌉ is the minimum number of bits needed to represent all nn element subsets of U.
Space Efficient Hash Tables With Worst Case Constant Access Time
 In STACS
, 2003
"... We generalize Cuckoo Hashing [23] to dary Cuckoo Hashing and show how this yields a simple hash table data structure that stores n elements in (1 + ffl) n memory cells, for any constant ffl ? 0. Assuming uniform hashing, accessing or deleting table entries takes at most d = O(ln ffl ) probes ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
We generalize Cuckoo Hashing [23] to dary Cuckoo Hashing and show how this yields a simple hash table data structure that stores n elements in (1 + ffl) n memory cells, for any constant ffl ? 0. Assuming uniform hashing, accessing or deleting table entries takes at most d = O(ln ffl ) probes and the expected amortized insertion time is constant. This is the first dictionary that has worst case constant access time and expected constant update time, works with (1 + ffl) n space, and supports satellite information. Experiments indicate that d = 4 choices suffice for ffl 0:03. We also describe variants of the data structure that allow the use of hash functions that can be evaluted in constant time.
When indexing equals compression: Experiments with compressing suffix arrays and applications
, 2004
"... We report on a new and improved version of highorder entropycompressed suffix arrays, which has theoretical performance guarantees similar to those in our earlier work [16], yet represents an improvement in practice. Our experiments indicate that the resulting text index offers stateoftheart co ..."
Abstract

Cited by 43 (5 self)
 Add to MetaCart
We report on a new and improved version of highorder entropycompressed suffix arrays, which has theoretical performance guarantees similar to those in our earlier work [16], yet represents an improvement in practice. Our experiments indicate that the resulting text index offers stateoftheart compression. In particular, we require roughly 20 % of the original text size—without requiring a separate instance of the text—and support fast and powerful searches. To our knowledge, this is the best known method in terms of space for fast searching. 1
Orderly Spanning Trees with Applications to Graph Encoding and Graph Drawing
 In 12 th Symposium on Discrete Algorithms (SODA
, 2001
"... The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
The canonical ordering for triconnected planar graphs is a powerful method for designing graph algorithms. This paper introduces the orderly pair of connected planar graphs, which extends the concept of canonical ordering to planar graphs not required to be triconnected. Let G be a connected planar graph. We give a lineartime algorithm that obtains an orderly pair (H