Results 1  10
of
99
Convolutive Blind Separation of NonStationary
"... Acoustic signals recorded simultaneously in a reverberant environment can be described as sums of differently convolved sources. The task of source separation is to identify the multiple channels and possibly to invert those in order to obtain estimates of the underlying sources. We tackle the probl ..."
Abstract

Cited by 193 (3 self)
 Add to MetaCart
Acoustic signals recorded simultaneously in a reverberant environment can be described as sums of differently convolved sources. The task of source separation is to identify the multiple channels and possibly to invert those in order to obtain estimates of the underlying sources. We tackle the problem by explicitly exploiting the nonstationarity of the acoustic sources. Changing crosscorrelations at multiple times give a sufficient set of constraints for the unknown channels. A least squares optimization allows us to estimate a forward model, identifying thus the multipath channel. In the same manner we can find an FIR backward model, which generates well separated model sources. Furthermore, for more than three channels we have sufficient conditions to estimate underlying additive sensor noise powers. We show good performance in real room environments and demonstrate the algorithm's utility for automatic speech recognition.
Blind Separation of Disjoint Orthogonal Signals: Demixing N Sources from 2 Mixtures
 In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP
, 2000
"... We present a novel method for blind separation of any number of sources using only two mixtures. The method applies when sources are (W)disjoint orthogonal, that is, when the supports of the (windowed) Fourier transform of any two signals in the mixture are disjoint sets. We show that, for anechoi ..."
Abstract

Cited by 124 (13 self)
 Add to MetaCart
(Show Context)
We present a novel method for blind separation of any number of sources using only two mixtures. The method applies when sources are (W)disjoint orthogonal, that is, when the supports of the (windowed) Fourier transform of any two signals in the mixture are disjoint sets. We show that, for anechoic mixtures of attenuated and delayed sources, the method allows one to estimate the mixing parameters by clustering ratios of the timefrequency representations of the mixtures. The estimates of the mixing parameters are then used to partition the timefrequency representation of one mixture to recover the original sources. The technique is valid even in the case when the number of sources is larger than the number of mixtures. The general results are verified on both speech and wireless signals. Sample sound files can be found here: http://www.princeton.edu/~srickard/bss.html 1. INTRODUCTION Demixing noisy mixtures has been a goal of long standing in the field of blind source separation(...
Blind Separation Of Convolved Sources Based On Information Maximization
 IN IEEE WORKSHOP ON NEURAL NETWORKS FOR SIGNAL PROCESSING
, 1996
"... Blind separation of independent sources from their convolutive mixtures is a problem in many real world multisensor applications. In this paper we present a solution to this problem based on the information maximization principle, which was recently proposed by Bell and Sejnowski for the case of bl ..."
Abstract

Cited by 111 (1 self)
 Add to MetaCart
Blind separation of independent sources from their convolutive mixtures is a problem in many real world multisensor applications. In this paper we present a solution to this problem based on the information maximization principle, which was recently proposed by Bell and Sejnowski for the case of blind separation of instantaneous mixtures. We present a feedback network architecture capable of coping with convolutive mixtures, and we derive the adaptation equations for the adaptive filters in the network by maximizing the information transferred through the network. Examples using speech signals are presented to illustrate the algorithm.
Fundamental Limitation Of Frequency Domain Blind Source Separation For Convolved Mixture Of Speech
 IEEE Trans. Speech Audio Process
, 2001
"... Despite several recent proposals to achieve Blind Source Separation (BSS) for realistic acoustic signals, the separation performance is still not enough. In particular, when the length of an impulse response is long, the performance is highly limited. In this paper, we consider the reason for the po ..."
Abstract

Cited by 92 (15 self)
 Add to MetaCart
(Show Context)
Despite several recent proposals to achieve Blind Source Separation (BSS) for realistic acoustic signals, the separation performance is still not enough. In particular, when the length of an impulse response is long, the performance is highly limited. In this paper, we consider the reason for the poor performance of BSS in a long reverberation environment. First, we show that it is useless to be constrained by the condition P << T, where T is the frame size of FFT and P is the length of a room impulse response. We also discuss the limitation of frequency domain BSS, by showing that the frequency domain BSS framework is equivalent to two sets of frequency domain adaptive beamformers.
Multichannel Blind Deconvolution: Fir Matrix Algebra And Separation Of Multipath Mixtures
, 1996
"... A general tool for multichannel and multipath problems is given in FIR matrix algebra. With Finite Impulse Response (FIR) filters (or polynomials) assuming the role played by complex scalars in traditional matrix algebra, we adapt standard eigenvalue routines, factorizations, decompositions, and mat ..."
Abstract

Cited by 89 (0 self)
 Add to MetaCart
A general tool for multichannel and multipath problems is given in FIR matrix algebra. With Finite Impulse Response (FIR) filters (or polynomials) assuming the role played by complex scalars in traditional matrix algebra, we adapt standard eigenvalue routines, factorizations, decompositions, and matrix algorithms for use in multichannel /multipath problems. Using abstract algebra/group theoretic concepts, information theoretic principles, and the Bussgang property, methods of single channel filtering and source separation of multipath mixtures are merged into a general FIR matrix framework. Techniques developed for equalization may be applied to source separation and vice versa. Potential applications of these results lie in neural networks with feedforward memory connections, wideband array processing, and in problems with a multiinput, multioutput network having channels between each source and sensor, such as source separation. Particular applications of FIR polynomial matrix alg...
Geometric source separation: merging convolutive source separation with geometric beamforming
 IEEE Trans. Speech Audio Process
, 2002
"... ..."
A first application of independent component analysis to extracting structure from stock returns
 International Journal of Neural Systems
, 1997
"... ..."
Adaptive blind signal processingneural network approaches
 Proc. of the IEEE
, 1998
"... Learning algorithms and underlying basic mathematical ideas are presented for the problem of adaptive blind signal processing, especially instantaneous blind separation and multichannel blind deconvolution/equalization of independent source signals. We discuss recent developments of adaptive learnin ..."
Abstract

Cited by 61 (9 self)
 Add to MetaCart
(Show Context)
Learning algorithms and underlying basic mathematical ideas are presented for the problem of adaptive blind signal processing, especially instantaneous blind separation and multichannel blind deconvolution/equalization of independent source signals. We discuss recent developments of adaptive learning algorithms based on the natural gradient approach and their properties concerning convergence, stability, and efficiency. Several promising schemas are proposed and reviewed in the paper. Emphasis is given to neural networks or adaptive filtering models and associated online adaptive nonlinear learning algorithms. Computer simulations illustrate the performances of the developed algorithms. Some results presented in this paper are new and are being published for the first time.
A generalization of blind source separation algorithms for convolutive mixtures based on secondorder statistics
 IEEE Transactions on Speech and Audio Processing
, 2005
"... ..."
(Show Context)
Blind Separation Of Delayed Sources Based On Information Maximization
, 1996
"... Recently, Bell and Sejnowski have presented an approach to blind source separation based on the information maximization principle. We extend this approach into more general cases where the sources may have been delayed with respect to each other. We present a network architecture capable of coping ..."
Abstract

Cited by 43 (1 self)
 Add to MetaCart
Recently, Bell and Sejnowski have presented an approach to blind source separation based on the information maximization principle. We extend this approach into more general cases where the sources may have been delayed with respect to each other. We present a network architecture capable of coping with such sources, and we derive the adaptation equations for the delays and the weights in the network by maximizing the information transferred through the network. Examples using wideband sources such as speech are presented to illustrate the algorithm.