Results 1 
5 of
5
Applications of Linear Logic to Computation: An Overview
, 1993
"... This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, li ..."
Abstract

Cited by 41 (3 self)
 Add to MetaCart
This paper is an overview of existing applications of Linear Logic (LL) to issues of computation. After a substantial introduction to LL, it discusses the implications of LL to functional programming, logic programming, concurrent and objectoriented programming and some other applications of LL, like semantics of negation in LP, nonmonotonic issues in AI planning, etc. Although the overview covers pretty much the stateoftheart in this area, by necessity many of the works are only mentioned and referenced, but not discussed in any considerable detail. The paper does not presuppose any previous exposition to LL, and is addressed more to computer scientists (probably with a theoretical inclination) than to logicians. The paper contains over 140 references, of which some 80 are about applications of LL. 1 Linear Logic Linear Logic (LL) was introduced in 1987 by Girard [62]. From the very beginning it was recognized as relevant to issues of computation (especially concurrency and stat...
First Order Linear Logic in Symmetric Monoidal Closed Categories
, 1991
"... There has recently been considerable interest in the development of `logical frameworks ' which can represent many of the logics arising in computer science in a uniform way. Within the Edinburgh LF project, this concept is split into two components; the first being a general proof theoretic encodin ..."
Abstract

Cited by 11 (0 self)
 Add to MetaCart
There has recently been considerable interest in the development of `logical frameworks ' which can represent many of the logics arising in computer science in a uniform way. Within the Edinburgh LF project, this concept is split into two components; the first being a general proof theoretic encoding of logics, and the second a uniform treatment of their model theory. This thesis forms a case study for the work on model theory. The models of many first and higher order logics can be represented as fibred or indexed categories with certain extra structure, and this has been suggested as a general paradigm. The aim of the thesis is to test the strength and flexibility of this paradigm by studying the specific case of Girard's linear logic. It should be noted that the exact form of this logic in the first order case is not entirely certain, and the system treated here is significantly different to that considered by Girard.
On the Structure of Highlevel Nets
 Helsinki University of Technology
, 1995
"... : The structure of Highlevel nets is studied from an algebraic and a logical point of view using Algebraic nets as an example. First the category of Algebraic nets is defined and the semantics given through an unfolding construction. Other kinds of Highlevel net formalisms are then presented. It is ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
: The structure of Highlevel nets is studied from an algebraic and a logical point of view using Algebraic nets as an example. First the category of Algebraic nets is defined and the semantics given through an unfolding construction. Other kinds of Highlevel net formalisms are then presented. It is shown that nets given in these formalisms can be transformed into equivalent Algebraic nets. Then the semantics of nets in terms of universal constructions is discussed. A definition of Algebraic nets in terms of structured transition systems is proposed. The semantics of the Algebraic net is then given as a free completion of this structured transition system to a category. As an alternative also a sheaf semantics of nets is examined. Here the semantics of the net arises as a limit of a diagram of sheaves. Next Algebraic nets are characterized as encodings of special morphisms called foldings. Each algebraic net gives rise to a surjective morphism between Petri nets and conversely each sur...
ResourceConscious AI Planning with Conjunctions and Disjunctions
, 2002
"... The aim of this work is to develop a resourceconscious Artificial Intelligence (AI) planning system, which allows for nondeterminism in the environment. ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
The aim of this work is to develop a resourceconscious Artificial Intelligence (AI) planning system, which allows for nondeterminism in the environment.
Petri Net Semantics of Bunched Implications
"... Engberg and Winskel's Petri net semantics of linear logic is reconsidered, from the point of view of the logic BI of bunched implications. We first show how BI can be used to overcome a number of difficulties pointed out by Engberg and Winskel, and we argue that it provides a more natural logic for ..."
Abstract
 Add to MetaCart
Engberg and Winskel's Petri net semantics of linear logic is reconsidered, from the point of view of the logic BI of bunched implications. We first show how BI can be used to overcome a number of difficulties pointed out by Engberg and Winskel, and we argue that it provides a more natural logic for the net semantics. We then briefly consider a more expressive logic based on an extension of BI with classical and modal features.