Results 1  10
of
79
Sketchpad: A manmachine graphical communication system
, 2003
"... The Sketchpad system uses drawing as a novel communication medium for a computer. The system contains input, output, and computation programs which enable it to interpret information drawn directly on a computer display. It has been used to draw electrical, mechanical, scientific, mathematical, and ..."
Abstract

Cited by 522 (6 self)
 Add to MetaCart
The Sketchpad system uses drawing as a novel communication medium for a computer. The system contains input, output, and computation programs which enable it to interpret information drawn directly on a computer display. It has been used to draw electrical, mechanical, scientific, mathematical, and animated drawings; it is a general purpose system. Sketchpad has shown the most usefulness as an aid to the understanding of processes, such as the notion of linkages, which can be described with pictures. Sketchpad also makes it easy to draw highly repetitive or highly accurate drawings and to change drawings previously drawn with it. The many drawings in this thesis were all made with Sketchpad.
Steps toward artificial intelligence
 Computers and Thought
, 1961
"... Harvard University. The work toward attaining "artificial intelligence’ ’ is the center of considerable computer research, design, and application. The field is in its starting transient, characterized by many varied and independent efforts. Marvin Minsky has been requested to draw this work to ..."
Abstract

Cited by 179 (0 self)
 Add to MetaCart
Harvard University. The work toward attaining "artificial intelligence’ ’ is the center of considerable computer research, design, and application. The field is in its starting transient, characterized by many varied and independent efforts. Marvin Minsky has been requested to draw this work together into a coherent summary, supplement it with appropriate explanatory or theoretical noncomputer information, and introduce his assessment of the state of the art. This paper emphasizes the class of activities in which a generalpurpose computer, complete with a library of basic programs, is further programmed to perform operations leading to ever higherlevel information processing functions such as learning and problem solving. This informative article will be of real interest to both the general Proceedings reader and the computer specialist. The Guest Editor.
Shortest Paths Algorithms: Theory And Experimental Evaluation
 Mathematical Programming
, 1993
"... . We conduct an extensive computational study of shortest paths algorithms, including some very recent algorithms. We also suggest new algorithms motivated by the experimental results and prove interesting theoretical results suggested by the experimental data. Our computational study is based on se ..."
Abstract

Cited by 142 (14 self)
 Add to MetaCart
. We conduct an extensive computational study of shortest paths algorithms, including some very recent algorithms. We also suggest new algorithms motivated by the experimental results and prove interesting theoretical results suggested by the experimental data. Our computational study is based on several natural problem classes which identify strengths and weaknesses of various algorithms. These problem classes and algorithm implementations form an environment for testing the performance of shortest paths algorithms. The interaction between the experimental evaluation of algorithm behavior and the theoretical analysis of algorithm performance plays an important role in our research. Andrew V. Goldberg was supported in part by ONR Young Investigator Award N0001491J1855, NSF Presidential Young Investigator Grant CCR8858097 with matching funds from AT&T, DEC, and 3M, and a grant from Powell Foundation. This work was done while Boris V. Cherkassky was visiting Stanford University Compu...
The Watershed Transform: Definitions, Algorithms and Parallelization Strategies
, 2001
"... The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the li ..."
Abstract

Cited by 134 (3 self)
 Add to MetaCart
The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the literature. The need to distinguish between definition, algorithm specification and algorithm implementation is pointed out. Various examples are given which illustrate differences between watershed transforms based on different definitions and/or implementations. The second part of the paper surveys approaches for parallel implementation of sequential watershed algorithms.
The image foresting transform: Theory, algorithms, and applications
 IEEE TPAMI
, 2004
"... The image foresting transform (IFT) is a graphbased approach to the design of image processing operators based on connectivity. It naturally leads to correct and efficient implementations and to a better understanding of how different operators relate to each other. We give here a precise definiti ..."
Abstract

Cited by 59 (22 self)
 Add to MetaCart
The image foresting transform (IFT) is a graphbased approach to the design of image processing operators based on connectivity. It naturally leads to correct and efficient implementations and to a better understanding of how different operators relate to each other. We give here a precise definition of the IFT, and a procedure to compute it—a generalization of Dijkstra’s algorithm—with a proof of correctness. We also discuss implementation issues and illustrate the use of the IFT in a few applications.
Shortest Path Algorithms in Transportation Models: Classical and Innovative Aspects
, 1998
"... Shortest Path Problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is transportation, where shortest path problems of different kinds need to be solved. Due to the nature of the application, transportation scientists ..."
Abstract

Cited by 51 (3 self)
 Add to MetaCart
Shortest Path Problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is transportation, where shortest path problems of different kinds need to be solved. Due to the nature of the application, transportation scientists need very flexible and efficient shortest path procedures, both from the running time point of view, and also for the memory requirements. Since no "best" algorithm currently exists for every kind of transportation problem, research in this field has recently moved to the design and implementation of "ad hoc" shortest path procedures, which are able to capture the peculiarities of the problems under consideration. The aim of this work is to present in a unifying framework both the main algorithmic approaches that have been proposed in the past years for solving the shortest path problems arising most frequently in the transportation field, and also some important implementation techniques ...
Architectures and Algorithms for FieldProgrammable Gate Arrays with Embedded Memory
, 1997
"... Recent dramatic improvements in integrated circuit fabrication technology have led to FieldProgrammable Gate Arrays (FPGAs) capable of implementing entire digital systems, as opposed to the smaller logic circuits that have traditionally been targeted to FPGAs. Unlike the smaller circuits, these la ..."
Abstract

Cited by 47 (5 self)
 Add to MetaCart
Recent dramatic improvements in integrated circuit fabrication technology have led to FieldProgrammable Gate Arrays (FPGAs) capable of implementing entire digital systems, as opposed to the smaller logic circuits that have traditionally been targeted to FPGAs. Unlike the smaller circuits, these large systems often contain memory. Architectural support for the efficient implementation of memory in nextgeneration FPGAs is therefore crucial. This dissertation examines the architecture of FPGAs with memory,aswell as algorithms that map circuits into these devices. Three aspects are considered: the analysis of circuits that contain memory as well as the automated random generation of such circuits, the architecture and algorithms for standalone con#gurable memory devices, and architect...
NegativeCycle Detection Algorithms
 MATHEMATICAL PROGRAMMING
, 1996
"... We study the problem of finding a negative length cycle in a network. An algorithm for the negative cycle problem combines a shortest path algorithm and a cycle detection strategy. We study various combinations of shortest path algorithms and cycle detection strategies and find the best combinations ..."
Abstract

Cited by 46 (5 self)
 Add to MetaCart
We study the problem of finding a negative length cycle in a network. An algorithm for the negative cycle problem combines a shortest path algorithm and a cycle detection strategy. We study various combinations of shortest path algorithms and cycle detection strategies and find the best combinations. One of our discoveries is that a cycle detection strategy of Tarjan greatly improves practical performance of a classical shortest path algorithm, making it competitive with the fastest known algorithms on a wide range of problems. As a part of our study, we develop problem families for testing negative cycle algorithms.
2D Euclidean distance transform algorithms: A comparative survey
 ACM COMPUTING SURVEYS
, 2008
"... The distance transform (DT) is a general operator forming the basis of many methods in computer vision and geometry, with great potential for practical applications. However, all the optimal algorithms for the computation of the exact Euclidean DT (EDT) were proposed only since the 1990s. In this wo ..."
Abstract

Cited by 35 (2 self)
 Add to MetaCart
The distance transform (DT) is a general operator forming the basis of many methods in computer vision and geometry, with great potential for practical applications. However, all the optimal algorithms for the computation of the exact Euclidean DT (EDT) were proposed only since the 1990s. In this work, stateoftheart sequential 2D EDT algorithms are reviewed and compared, in an effort to reach more solid conclusions regarding their differences in speed and their exactness. Six of the best algorithms were fully implemented and compared in practice.