Results 1 
5 of
5
Interface Automata
 Proceedings of the Ninth Annual Symposium on Foundations of Software Engineering (FSE), ACM
, 2001
"... Conventional type systems specify interfaces in terms of values and domains. ..."
Abstract

Cited by 333 (22 self)
 Add to MetaCart
Conventional type systems specify interfaces in terms of values and domains.
Computing Simulations on Finite and Infinite Graphs
, 1996
"... . We present algorithms for computing similarity relations of labeled graphs. Similarity relations have applications for the refinement and verification of reactive systems. For finite graphs, we present an O(mn) algorithm for computing the similarity relation of a graph with n vertices and m edges ..."
Abstract

Cited by 147 (6 self)
 Add to MetaCart
. We present algorithms for computing similarity relations of labeled graphs. Similarity relations have applications for the refinement and verification of reactive systems. For finite graphs, we present an O(mn) algorithm for computing the similarity relation of a graph with n vertices and m edges (assuming m n). For effectively presented infinite graphs, we present a symbolic similaritychecking procedure that terminates if a finite similarity relation exists. We show that 2D rectangular automata, which model discrete reactive systems with continuous environments, define effectively presented infinite graphs with finite similarity relations. It follows that the refinement problem and the 8CTL modelchecking problem are decidable for 2D rectangular automata. 1 Introduction A labeled graph G = (V; E;A; hh\Deltaii) consist of a (possibly infinite) set V of vertices, a set E ` V 2 of edges, a set A of labels, and a function hh\Deltaii : V ! A that maps each vertex v to a label hh...
Property preserving abstractions for the verification of concurrent systems
 FORMAL METHODS IN SYSTEM DESIGN, VOL 6, ISS
, 1995
"... We study property preserving transformations for reactive systems. The main idea is the use of simulations parameterized by Galois connections ( �), relating the lattices of properties of two systems. We propose and study a notion of preservation of properties expressed by formulas of a logic, by a ..."
Abstract

Cited by 136 (4 self)
 Add to MetaCart
We study property preserving transformations for reactive systems. The main idea is the use of simulations parameterized by Galois connections ( �), relating the lattices of properties of two systems. We propose and study a notion of preservation of properties expressed by formulas of a logic, by a function mapping sets of states of a system S into sets of states of a system S'. We give results on the preservation of properties expressed in sublanguages of the branching timecalculus when two systems S and S' are related via h � isimulations. They can be used to verify a property for a system by verifying the same property on a simpler system which is an abstraction of it. We show also under which conditions abstraction of concurrent systems can be computed from the abstraction of their components. This allows a compositional application of the proposed verification method. This is a revised version of the papers [2] and [16] � the results are fully developed in [27].
Alternating refinement relations
 In Proceedings of the Ninth International Conference on Concurrency Theory (CONCUR’98), volume 1466 of LNCS
, 1998
"... Abstract. Alternating transition systems are a general model for composite systems which allow the study of collaborative as well as adversarial relationships between individual system components. Unlike in labeled transition systems, where each transition corresponds to a possible step of the syste ..."
Abstract

Cited by 123 (16 self)
 Add to MetaCart
Abstract. Alternating transition systems are a general model for composite systems which allow the study of collaborative as well as adversarial relationships between individual system components. Unlike in labeled transition systems, where each transition corresponds to a possible step of the system (which may involve some or all components), in alternating transition systems, each transition corresponds to a possible move in a game between the components. In this paper, we study refinement relations between alternating transition systems, such as “Does the implementation refine the set £ of specification components without constraining the components not in £? ” In particular, we generalize the definitions of the simulation and trace containment preorders from labeled transition systems to alternating transition systems. The generalizations are called alternating simulation and alternating trace containment. Unlike existing refinement relations, they allow the refinement of individual components within the context of a composite system description. We show that, like ordinary simulation, alternating simulation can be checked in polynomial time using a fixpoint computation algorithm. While ordinary trace containment is PSPACEcomplete, we establish alternating trace containment to be EXPTIMEcomplete. Finally, we present logical characterizations for the two preorders in terms of ATL, a temporal logic capable of referring to games between system components. 1
"Have I written enough properties?"  A method of comparison between specification and implementation
"... This work presents a novel approach for evaluating the quality of the model checking process. Given a model of a design #or implementation # and a temporal logic formula that describes a speci#cation, model checking determines whether the model satis#es the speci#cation. ..."
Abstract

Cited by 18 (0 self)
 Add to MetaCart
This work presents a novel approach for evaluating the quality of the model checking process. Given a model of a design #or implementation # and a temporal logic formula that describes a speci#cation, model checking determines whether the model satis#es the speci#cation.