Results 1  10
of
16
An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions
 ACMSIAM SYMPOSIUM ON DISCRETE ALGORITHMS
, 1994
"... Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any po ..."
Abstract

Cited by 775 (31 self)
 Add to MetaCart
Consider a set S of n data points in real ddimensional space, R d , where distances are measured using any Minkowski metric. In nearest neighbor searching we preprocess S into a data structure, so that given any query point q 2 R d , the closest point of S to q can be reported quickly. Given any positive real ffl, a data point p is a (1 + ffl)approximate nearest neighbor of q if its distance from q is within a factor of (1 + ffl) of the distance to the true nearest neighbor. We show that it is possible to preprocess a set of n points in R d in O(dn log n) time and O(dn) space, so that given a query point q 2 R d , and ffl ? 0, a (1 + ffl)approximate nearest neighbor of q can be computed in O(c d;ffl log n) time, where c d;ffl d d1 + 6d=ffle d is a factor depending only on dimension and ffl. In general, we show that given an integer k 1, (1 + ffl)approximations to the k nearest neighbors of q can be computed in additional O(kd log n) time.
Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality
, 1998
"... The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimens ..."
Abstract

Cited by 713 (33 self)
 Add to MetaCart
The nearest neighbor problem is the following: Given a set of n points P = fp 1 ; : : : ; png in some metric space X, preprocess P so as to efficiently answer queries which require finding the point in P closest to a query point q 2 X. We focus on the particularly interesting case of the ddimensional Euclidean space where X = ! d under some l p norm. Despite decades of effort, the current solutions are far from satisfactory; in fact, for large d, in theory or in practice, they provide little improvement over the bruteforce algorithm which compares the query point to each data point. Of late, there has been some interest in the approximate nearest neighbors problem, which is: Find a point p 2 P that is an fflapproximate nearest neighbor of the query q in that for all p 0 2 P , d(p; q) (1 + ffl)d(p 0 ; q). We present two algorithmic results for the approximate version that significantly improve the known bounds: (a) preprocessing cost polynomial in n and d, and a trul...
Similarity search in high dimensions via hashing
, 1999
"... The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image dat ..."
Abstract

Cited by 423 (12 self)
 Add to MetaCart
The nearest or nearneighbor query problems arise in a large variety of database applications, usually in the context of similarity searching. Of late, there has been increasing interest in building search/index structures for performing similarity search over highdimensional data, e.g., image databases, document collections, timeseries databases, and genome databases. Unfortunately, all known techniques for solving this problem fall prey to the \curse of dimensionality. " That is, the data structures scale poorly with data dimensionality; in fact, if the number of dimensions exceeds 10 to 20, searching in kd trees and related structures involves the inspection of a large fraction of the database, thereby doing no better than bruteforce linear search. It has been suggested that since the selection of features and the choice of a distance metric in typical applications is rather heuristic, determining an approximate nearest neighbor should su ce for most practical purposes. In this paper, we examine a novel scheme for approximate similarity search based on hashing. The basic idea is to hash the points
Efficient Search for Approximate Nearest Neighbor in High Dimensional Spaces
, 1998
"... We address the problem of designing data structures that allow efficient search for approximate nearest neighbors. More specifically, given a database consisting of a set of vectors in some high dimensional Euclidean space, we want to construct a spaceefficient data structure that would allow us to ..."
Abstract

Cited by 190 (9 self)
 Add to MetaCart
We address the problem of designing data structures that allow efficient search for approximate nearest neighbors. More specifically, given a database consisting of a set of vectors in some high dimensional Euclidean space, we want to construct a spaceefficient data structure that would allow us to search, given a query vector, for the closest or nearly closest vector in the database. We also address this problem when distances are measured by the L 1 norm, and in the Hamming cube. Significantly improving and extending recent results of Kleinberg, we construct data structures whose size is polynomial in the size of the database, and search algorithms that run in time nearly linear or nearly quadratic in the dimension (depending on the case; the extra factors are polylogarithmic in the size of the database). Computer Science Department, Technion  IIT, Haifa 32000, Israel. Email: eyalk@cs.technion.ac.il y Bell Communications Research, MCC1C365B, 445 South Street, Morristown, NJ ...
Two Algorithms for NearestNeighbor Search in High Dimensions
, 1997
"... Representing data as points in a highdimensional space, so as to use geometric methods for indexing, is an algorithmic technique with a wide array of uses. It is central to a number of areas such as information retrieval, pattern recognition, and statistical data analysis; many of the problems aris ..."
Abstract

Cited by 170 (0 self)
 Add to MetaCart
Representing data as points in a highdimensional space, so as to use geometric methods for indexing, is an algorithmic technique with a wide array of uses. It is central to a number of areas such as information retrieval, pattern recognition, and statistical data analysis; many of the problems arising in these applications can involve several hundred or several thousand dimensions. We consider the nearestneighbor problem for ddimensional Euclidean space: we wish to preprocess a database of n points so that given a query point, one can efficiently determine its nearest neighbors in the database. There is a large literature on algorithms for this problem, in both the exact and approximate cases. The more sophisticated algorithms typically achieve a query time that is logarithmic in n at the expense of an exponential dependence on the dimension d; indeed, even the averagecase analysis of heuristics such as kd trees reveals an exponential dependence on d in the query time. In this wor...
Nearest Neighbors In HighDimensional Spaces
, 2004
"... In this chapter we consider the following problem: given a set P of points in a highdimensional space, construct a data structure which given any query point q nds the point in P closest to q. This problem, called nearest neighbor search is of significant importance to several areas of computer sci ..."
Abstract

Cited by 76 (2 self)
 Add to MetaCart
In this chapter we consider the following problem: given a set P of points in a highdimensional space, construct a data structure which given any query point q nds the point in P closest to q. This problem, called nearest neighbor search is of significant importance to several areas of computer science, including pattern recognition, searching in multimedial data, vector compression [GG91], computational statistics [DW82], and data mining. Many of these applications involve data sets which are very large (e.g., a database containing Web documents could contain over one billion documents). Moreover, the dimensionality of the points is usually large as well (e.g., in the order of a few hundred). Therefore, it is crucial to design algorithms which scale well with the database size as well as with the dimension. The nearestneighbor problem is an example of a large class of proximity problems, which, roughly speaking, are problems whose definitions involve the notion of...
LocalityPreserving Hashing in Multidimensional Spaces
 In Proceedings of the 29th ACM Symposium on Theory of Computing
, 1997
"... this paper was published in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 618625, 1997 ..."
Abstract

Cited by 50 (4 self)
 Add to MetaCart
this paper was published in Proceedings of the 29th Annual ACM Symposium on Theory of Computing, pages 618625, 1997
Entropy based nearest neighbor search in high dimensions
 In SODA ’06: Proceedings of the seventeenth annual ACMSIAM Symposium on Discrete Algorithms
"... In this paper we study the problem of finding the approximate nearest neighbor of a query point in the high dimensional space, focusing on the Euclidean space. The earlier approaches use localitypreserving hash functions (that tend to map nearby points to the same value) to construct several hash ta ..."
Abstract

Cited by 27 (5 self)
 Add to MetaCart
In this paper we study the problem of finding the approximate nearest neighbor of a query point in the high dimensional space, focusing on the Euclidean space. The earlier approaches use localitypreserving hash functions (that tend to map nearby points to the same value) to construct several hash tables to ensure that the query point hashes to the same bucket as its nearest neighbor in at least one table. Our approach is different – we use one (or a few) hash table and hash several randomly chosen points in the neighborhood of the query point showing that at least one of them will hash to the bucket containing its nearest neighbor. We show that the number of randomly chosen points in the neighborhood of the query point q required depends on the entropy of the hash value h(p) of a random point p at the same distance from q at its nearest neighbor, given q and the locality preserving hash function h chosen randomly from the hash family. Precisely, we show that if the entropy I(h(p)q, h) = M and g is a bound on the probability that two faroff points will hash to the same bucket, then we can find the approximate nearest neighbor in O(nρ) time and near linear Õ(n) space where ρ = M / log(1/g). Alternatively we can build a data structure of size Õ(n1/(1−ρ)) to answer queries in Õ(d) time. By applying this analysis to the locality preserving hash functions in [15, 19, 6] and adjusting the parameters we show that the c nearest neighbor can be computed in time Õ(nρ) and near linear space where ρ ≈ 2.06/c as c becomes large. 1
Analysis of Approximate Nearest Neighbor Searching with Clustered Point Sets.” ALENEX 99
, 1999
"... Nearest neighbor searching is the following problem: we are given a set S of n data points in a metric space, X, and are asked to preprocess these points so that, given any query point q ∈ X, the data point nearest to q can be reported quickly. Nearest neighbor searching has applications in many are ..."
Abstract

Cited by 18 (5 self)
 Add to MetaCart
Nearest neighbor searching is the following problem: we are given a set S of n data points in a metric space, X, and are asked to preprocess these points so that, given any query point q ∈ X, the data point nearest to q can be reported quickly. Nearest neighbor searching has applications in many areas, including
Tighter lower bounds for nearest neighbor search and related problems in the cell probe model
 In Proc. 32nd Annu. ACM Symp. Theory Comput
, 2000
"... We prove new lower bounds for nearest neighbor search in the Hamming cube. Our lower bounds are for randomized, twosided error, algorithms in Yao’s cell probe model. Our bounds are in the form of a tradeoff among the number of cells, the size of a cell, and the search time. For example, suppose we ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
We prove new lower bounds for nearest neighbor search in the Hamming cube. Our lower bounds are for randomized, twosided error, algorithms in Yao’s cell probe model. Our bounds are in the form of a tradeoff among the number of cells, the size of a cell, and the search time. For example, suppose we are searching among n points in the d dimensional cube, we use poly(n, d) cells, each containing poly(d, log n) bits. We get a lower bound of Ω(d / log n) on the search time, a significant improvement over the recent bound of Ω(log d) of Borodin et al. This should be contrasted with the upper bound of O(log log d) for approximate search (and O(1) for a decision version of the problem; our lower bounds hold in that case). By previous results, the bounds for the cube imply similar bounds for nearest neighbor search in high dimensional Euclidean space, and for other geometric problems.