Results 1  10
of
107
SemiAbelian Categories
, 2000
"... The notion of semiabelian category as proposed in this paper is designed to capture typical algebraic properties valid for groups, rings and algebras, say, just as abelian categories allow for a generalized treatment of abeliangroup and module theory. In modern terms, semiabelian categories ar ..."
Abstract

Cited by 37 (3 self)
 Add to MetaCart
The notion of semiabelian category as proposed in this paper is designed to capture typical algebraic properties valid for groups, rings and algebras, say, just as abelian categories allow for a generalized treatment of abeliangroup and module theory. In modern terms, semiabelian categories are exact in the sense of Barr and protomodular in the sense of Bourn and have finite coproducts and a zero object. We show how these conditions relate to "old" exactness axioms involving normal monomorphisms and epimorphisms, as used in the fifties and sixties, and we give extensive references to the literature in order to indicate why semiabelian categories provide an appropriate notion to establish the isomorphism and decomposition theorems of group theory, to pursue general radical theory of rings, and how to arrive at basic statements as needed in homological algebra of groups and similar nonabelian structures. Mathematics Subject Classification: 18E10, 18A30, 18A32. Key words:...
The EckmannHilton argument, higher operads and Enspaces, available at http://www.ics.mq.edu.au
 mbatanin/papers.html of Homotopy and Related Structures
"... The classical EckmannHilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of ..."
Abstract

Cited by 32 (5 self)
 Add to MetaCart
The classical EckmannHilton argument shows that two monoid structures on a set, such that one is a homomorphism for the other, coincide and, moreover, the resulting monoid is commutative. This argument immediately gives a proof of the commutativity of the higher homotopy groups. A reformulation of this argument in the language of higher categories is: suppose we have a one object, one arrow 2category, then its Homset is a commutative monoid. A similar argument due to A.Joyal and R.Street shows that a one object, one arrow tricategory is ‘the same’ as a braided monoidal category. In this paper we extend this argument to arbitrary dimension. We demonstrate that for an noperad A in the author’s sense there exists a symmetric operad S n (A) called the nfold suspension of A such that the
Adequacy for algebraic effects
 In 4th FoSSaCS
, 2001
"... We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to ..."
Abstract

Cited by 30 (16 self)
 Add to MetaCart
We present a logic for algebraic effects, based on the algebraic representation of computational effects by operations and equations. We begin with the acalculus, a minimal calculus which separates values, effects, and computations and thereby canonises the order of evaluation. This is extended to obtain the logic, which is a classical firstorder multisorted logic with higherorder value and computation types, as in Levy’s callbypushvalue, a principle of induction over computations, a free algebra principle, and predicate fixed points. This logic embraces Moggi’s computational λcalculus, and also, via definable modalities, HennessyMilner logic, and evaluation logic, though Hoare logic presents difficulties. 1
Expressive Logics for Coalgebras via Terminal Sequence Induction
 Notre Dame J. Formal Logic
, 2002
"... This paper introduces the proof principle of terminal sequence induction and shows, how terminal sequence induction can be used to obtain expressiveness results for logics, interpreted over coalgebras. ..."
Abstract

Cited by 26 (8 self)
 Add to MetaCart
This paper introduces the proof principle of terminal sequence induction and shows, how terminal sequence induction can be used to obtain expressiveness results for logics, interpreted over coalgebras.
Interpolation in Grothendieck Institutions
 THEORETICAL COMPUTER SCIENCE
, 2003
"... It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
It is well known that interpolation properties of logics underlying specification formalisms play an important role in the study of structured specifications, they have also many other useful logical consequences. In this paper, we solve the interpolation problem for Grothendieck institutions which have recently emerged as an important mathematical structure underlying heterogenous multilogic specification. Our main result can be used in the applications in several different ways. It can be used to establish interpolation properties for multilogic Grothendieck institutions, but also to lift interpolation properties from unsorted logics to their many sorted variants. The importance of the latter resides in the fact that, unlike other structural properties of logics, many sorted interpolation is a nontrivial generalisation of unsorted interpolation. The concepts, results, and the applications discussed in this paper are illustrated with several examples from conventional logic and algebraic specification theory.
Algebraic Approaches to Nondeterminism  an Overview
 ACM Computing Surveys
, 1997
"... this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University ..."
Abstract

Cited by 23 (3 self)
 Add to MetaCart
this paper was published as Walicki, M.A. and Meldal, S., 1995, Nondeterministic Operators in Algebraic Frameworks, Tehnical Report No. CSLTR95664, Stanford University
BernaysGödel typetheory
 Journal of Pure and Applied Algebra
, 2003
"... . There is a close relationship between category theory and logic. For example, elementary toposes have just enough properties to interpret intuitionistic higherorder logic, and we think of toposes as `categories of sets'. In fact, a topos with a natural numbers object is an adequate universe in ..."
Abstract

Cited by 17 (3 self)
 Add to MetaCart
. There is a close relationship between category theory and logic. For example, elementary toposes have just enough properties to interpret intuitionistic higherorder logic, and we think of toposes as `categories of sets'. In fact, a topos with a natural numbers object is an adequate universe in which to develop intuitionistic mathematics, and such a topos may be seen as a categorical analogue of a model of intuitionistic ZermeloFraenkel settheory. In this paper we implement the categorical analogue of BernaysGodel settheory. We introduce the notion of small structure on a category, and if small structure satises certain axioms we can think of the underlying category as a category of classes. Our axioms imply the existence of a covariant powerset monad on the underlying category of classes, which sends a class to the class of its small subclasses. Simple xed points of this and related monads are shown to be models of intuitionistic ZermeloFraenkel settheory (IZF). ...
Complete Cuboidal Sets in Axiomatic Domain Theory (Extended Abstract)
 In Proceedings of 12th Annual Symposium on Logic in Computer Science
, 1997
"... ) Marcelo Fiore !mf@dcs.ed.ac.uk? Gordon Plotkin y !gdp@dcs.ed.ac.uk? John Power !ajp@dcs.ed.ac.uk? Department of Computer Science Laboratory for Foundations of Computer Science University of Edinburgh, The King's Buildings Edinburgh EH9 3JZ, Scotland Abstract We study the enrichment of ..."
Abstract

Cited by 16 (4 self)
 Add to MetaCart
) Marcelo Fiore !mf@dcs.ed.ac.uk? Gordon Plotkin y !gdp@dcs.ed.ac.uk? John Power !ajp@dcs.ed.ac.uk? Department of Computer Science Laboratory for Foundations of Computer Science University of Edinburgh, The King's Buildings Edinburgh EH9 3JZ, Scotland Abstract We study the enrichment of models of axiomatic domain theory. To this end, we introduce a new and broader notion of domain, viz. that of complete cuboidal set, that complies with the axiomatic requirements. We show that the category of complete cuboidal sets provides a general notion of enrichment for a wide class of axiomatic domaintheoretic structures. Introduction The aim of Axiomatic Domain Theory (ADT) is to provide a conceptual understanding of why domains are adequate as mathematical models of computation. (For a discussion see [12, x Axiomatic Domain Theory ].) The approach taken is to axiomatise the structure needed on a category so that its objects can be considered as domains, and its maps as continuous...
On a Duality of Quantales emerging from an Operational Resolution
 INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS
, 1997
"... We introduce the notion of operational resolution, i.e., an isotone map from a powerset to a poset that meets two additional conditions, which generalizes the description of states as the atoms in a property lattice (Piron, 1976 and Aerts, 1982) or as the underlying set of a closure operator (Aerts, ..."
Abstract

Cited by 16 (9 self)
 Add to MetaCart
We introduce the notion of operational resolution, i.e., an isotone map from a powerset to a poset that meets two additional conditions, which generalizes the description of states as the atoms in a property lattice (Piron, 1976 and Aerts, 1982) or as the underlying set of a closure operator (Aerts, 1994 and Moore, 1995). We study the structure preservance of the related state transitions and show how the operational resolution constitutes an epimorphism between two unitary quantales.