Results 1 
2 of
2
Quickselect and Dickman function
 Combinatorics, Probability and Computing
, 2000
"... We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived ..."
Abstract

Cited by 24 (1 self)
 Add to MetaCart
We show that the limiting distribution of the number of comparisons used by Hoare's quickselect algorithm when given a random permutation of n elements for finding the mth smallest element, where m = o(n), is the Dickman function. The limiting distribution of the number of exchanges is also derived. 1 Quickselect Quickselect is one of the simplest and e#cient algorithms in practice for finding specified order statistics in a given sequence. It was invented by Hoare [19] and uses the usual partitioning procedure of quicksort: choose first a partitioning key, say x; regroup the given sequence into two parts corresponding to elements whose values are less than and larger than x, respectively; then decide, according to the size of the smaller subgroup, which part to continue recursively or to stop if x is the desired order statistics; see Figure 1 for an illustration in terms of binary search trees. For more details, see Guibas [15] and Mahmoud [26]. This algorithm , although ine#cient in the worst case, has linear mean when given a sequence of n independent and identically distributed continuous random variables, or equivalently, when given a random permutation of n elements, where, here and throughout this paper, all n! permutations are equally likely. Let C n,m denote the number of comparisons used by quickselect for finding the mth smallest element in a random permutation, where the first partitioning stage uses n 1 comparisons. Knuth [23] was the first to show, by some di#erencing argument, that E(C n,m ) = 2 (n + 3 + (n + 1)H n (m + 2)Hm (n + 3 m)H n+1m ) , n, where Hm = 1#k#m k 1 . A more transparent asymptotic approximation is E(C n,m ) (#), (#) := 2 #), # Part of the work of this author was done while he was visiting School of C...
Transitional Behaviors of the Average Cost of Quicksort With Medianof(2t + 1)
, 2001
"... A fine analysis is given of the transitional behavior of the average cost of quicksort with medianofthree. Asymptotic formulae are derived for the stepwise improvement of the average cost of quicksort when iterating medianofthree k rounds for all possible values of k. The methods used are genera ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
A fine analysis is given of the transitional behavior of the average cost of quicksort with medianofthree. Asymptotic formulae are derived for the stepwise improvement of the average cost of quicksort when iterating medianofthree k rounds for all possible values of k. The methods used are general enough to apply to quicksort with medianof(2t + 1) and to explain in a precise manner the transitional behaviors of the average cost from insertion sort to quicksort proper. Our results also imply nontrivial bounds on the expected height, "saturation level", and width in a random locally balanced binary search tree.