Results 1 
1 of
1
Average twin prime conjecture for elliptic curves
, 2007
"... Let E be an elliptic curve over Q. In 1988, Koblitz conjectured a precise asymptotic for the number of primes p up to x such that the order of the group of points of E over Fp is prime. This is an analogue of the Hardy and Littlewood twin prime conjecture in the case of elliptic curves. Koblitz’s co ..."
Abstract

Cited by 8 (3 self)
 Add to MetaCart
Let E be an elliptic curve over Q. In 1988, Koblitz conjectured a precise asymptotic for the number of primes p up to x such that the order of the group of points of E over Fp is prime. This is an analogue of the Hardy and Littlewood twin prime conjecture in the case of elliptic curves. Koblitz’s conjecture is still widely open. In this paper we prove that Koblitz’s conjecture is true on average over a twoparameter family of elliptic curves. One of the key ingredients in the proof is a short average distribution result in the style of BarbanDavenportHalberstam,