Results 1  10
of
22
Exact and Approximate Distances in Graphs  a survey
 In ESA
, 2001
"... We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems. ..."
Abstract

Cited by 57 (0 self)
 Add to MetaCart
We survey recent and not so recent results related to the computation of exact and approximate distances, and corresponding shortest, or almost shortest, paths in graphs. We consider many different settings and models and try to identify some remaining open problems.
A Simple Shortest Path Algorithm with Linear Average Time
"... We present a simple shortest path algorithm. If the input lengths are positive and uniformly distributed, the algorithm runs in linear time. The worstcase running time of the algorithm is O(m + n log C), where n and m are the number of vertices and arcs of the input graph, respectively, and C i ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
We present a simple shortest path algorithm. If the input lengths are positive and uniformly distributed, the algorithm runs in linear time. The worstcase running time of the algorithm is O(m + n log C), where n and m are the number of vertices and arcs of the input graph, respectively, and C is the ratio of the largest and the smallest nonzero arc length.
SingleSource ShortestPaths on Arbitrary Directed Graphs in Linear AverageCase Time
 In Proc. 12th ACMSIAM Symposium on Discrete Algorithms
, 2001
"... The quest for a lineartime singlesource shortestpath (SSSP) algorithm on directed graphs with positive edge weights is an ongoing hot research topic. While Thorup recently found an O(n + m) time RAM algorithm for undirected graphs with n nodes, m edges and integer edge weights in f0; : : : ; 2 w ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
The quest for a lineartime singlesource shortestpath (SSSP) algorithm on directed graphs with positive edge weights is an ongoing hot research topic. While Thorup recently found an O(n + m) time RAM algorithm for undirected graphs with n nodes, m edges and integer edge weights in f0; : : : ; 2 w 1g where w denotes the word length, the currently best time bound for directed sparse graphs on a RAM is O(n + m log log n). In the present paper we study the averagecase complexity of SSSP. We give a simple algorithm for arbitrary directed graphs with random edge weights uniformly distributed in [0; 1] and show that it needs linear time O(n + m) with high probability. 1 Introduction The singlesource shortestpath problem (SSSP) is a fundamental and wellstudied combinatorial optimization problem with many practical and theoretical applications [1]. Let G = (V; E) be a directed graph, jV j = n, jEj = m, let s be a distinguished vertex of the graph, and c be a function assigning a n...
Integer Priority Queues with Decrease Key in . . .
 STOC'03
, 2003
"... We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete i ..."
Abstract

Cited by 27 (2 self)
 Add to MetaCart
We consider Fibonacci heap style integer priority queues supporting insert and decrease key operations in constant time. We present a deterministic linear space solution that with n integer keys support delete in O(log log n) time. If the integers are in the range [0,N), we can also support delete in O(log log N) time. Even for the special case of monotone priority queues, where the minimum has to be nondecreasing, the best previous bounds on delete were O((log n) 1/(3−ε) ) and O((log N) 1/(4−ε)). These previous bounds used both randomization and amortization. Our new bounds a deterministic, worstcase, with no restriction to monotonicity, and exponentially faster. As a classical application, for a directed graph with n nodes and m edges with nonnegative integer weights, we get single source shortest paths in O(m + n log log n) time, or O(m + n log log C) ifC is the maximal edge weight. The later solves an open problem of Ahuja, Mehlhorn, Orlin, and
A New Approach to AllPairs Shortest Paths on RealWeighted Graphs
 Theoretical Computer Science
, 2003
"... We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci heaps. Her ..."
Abstract

Cited by 26 (2 self)
 Add to MetaCart
We present a new allpairs shortest path algorithm that works with realweighted graphs in the traditional comparisonaddition model. It runs in O(mn+n time, improving on the longstanding bound of O(mn + n log n) derived from an implementation of Dijkstra's algorithm with Fibonacci heaps. Here m and n are the number of edges and vertices, respectively.
Shortest Path Algorithms: Engineering Aspects
 In Proc. ESAAC ’01, Lecture Notes in Computer Science
, 2001
"... We review shortest path algorithms based on the multilevel bucket data structure [6] and discuss the interplay between theory and engineering choices that leads to e#cient implementations. Our experimental results suggest that the caliber heuristic [17] and adaptive parameter selection give an ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
We review shortest path algorithms based on the multilevel bucket data structure [6] and discuss the interplay between theory and engineering choices that leads to e#cient implementations. Our experimental results suggest that the caliber heuristic [17] and adaptive parameter selection give an e#cient algorithm, both on typical and on hard inputs, for a wide range of arc lengths.
Smoothed Analysis of Three Combinatorial Problems
 Proc. of the 28th Int. Symp. on Mathematical Foundations of Computer Science (MFCS), volume 2747 of Lecture Notes in Computer Science
, 2003
"... Smoothed analysis combines elements over worstcase and average case analysis. For an instance x the smoothed complexity is the average complexity of an instance obtained from x by a perturbation. The smoothed complexity of a problem is the worst smoothed complexity of any instance. Spielman and ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
Smoothed analysis combines elements over worstcase and average case analysis. For an instance x the smoothed complexity is the average complexity of an instance obtained from x by a perturbation. The smoothed complexity of a problem is the worst smoothed complexity of any instance. Spielman and Teng introduced this notion for continuous problems. We apply the concept to combinatorial problems and study the smoothed complexity of three classical discrete problems: quicksort, lefttoright maxima counting, and shortest paths. This opens a vast eld of nice analyses (using for example generating functions in the discrete case) which should lead to a better understanding of complexity landscapes of algorithms.
Computing Shortest Paths with Comparisons and Additions
 SODA
, 2002
"... We present an undirected allpairs shortest paths (APSP) algorithm which runs on a pointer machine in time O(mnot(m, n)) while making O(ran log a(m, n)) comparisons and additions, where m and n are the number of edges and vertices, respectively, and a(ra, n) is Tarjan's inverseAckermann function. ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
We present an undirected allpairs shortest paths (APSP) algorithm which runs on a pointer machine in time O(mnot(m, n)) while making O(ran log a(m, n)) comparisons and additions, where m and n are the number of edges and vertices, respectively, and a(ra, n) is Tarjan's inverseAckermann function. This improves upon all previous comparison & additionbased APSP algorithms when the graph is sparse, i.e., when m = o(n log n). At the heart of our APSP algorithm is a new singlesource shortest paths algorithm which runs in time O(ma(m,n) + nloglogr) on a pointer machine, where r is the ratio of the maximumtominimum edge length. So long as r < 2 '~°(a) this algorithm is faster than any implementation of Dijkstra's classical algorithm in the comparisonaddition model. For directed graphs we give an O(ra + nlogr)time comparison & additionbased SSSP algorithm on a pointer machine. Similar algorithms assuming integer weights or the RAM model were given earlier.
Experimental Evaluation of a New Shortest Path Algorithm (Extended Abstract)
, 2002
"... We evaluate the practical eciency of a new shortest path algorithm for undirected graphs which was developed by the rst two authors. This algorithm works on the fundamental comparisonaddition model. Theoretically, this new algorithm outperforms Dijkstra's algorithm on sparse graphs for the al ..."
Abstract

Cited by 13 (4 self)
 Add to MetaCart
We evaluate the practical eciency of a new shortest path algorithm for undirected graphs which was developed by the rst two authors. This algorithm works on the fundamental comparisonaddition model. Theoretically, this new algorithm outperforms Dijkstra's algorithm on sparse graphs for the allpairs shortest path problem, and more generally, for the problem of computing singlesource shortest paths from !(1) different sources. Our extensive experimental analysis demonstrates that this is also the case in practice. We present results which show the new algorithm to run faster than Dijkstra's on a variety of sparse graphs when the number of vertices ranges from a few thousand to a few million, and when computing singlesource shortest paths from as few as three different sources.
A shortest path algorithm for realweighted undirected graphs
 in 13th ACMSIAM Symp. on Discrete Algs
, 1985
"... Abstract. We present a new scheme for computing shortest paths on realweighted undirected graphs in the fundamental comparisonaddition model. In an efficient preprocessing phase our algorithm creates a linearsize structure that facilitates singlesource shortest path computations in O(m log α) ti ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
Abstract. We present a new scheme for computing shortest paths on realweighted undirected graphs in the fundamental comparisonaddition model. In an efficient preprocessing phase our algorithm creates a linearsize structure that facilitates singlesource shortest path computations in O(m log α) time, where α = α(m, n) is the very slowly growing inverseAckermann function, m the number of edges, and n the number of vertices. As special cases our algorithm implies new bounds on both the allpairs and singlesource shortest paths problems. We solve the allpairs problem in O(mnlog α(m, n)) time and, if the ratio between the maximum and minimum edge lengths is bounded by n (log n)O(1) , we can solve the singlesource problem in O(m + nlog log n) time. Both these results are theoretical improvements over Dijkstra’s algorithm, which was the previous best for real weighted undirected graphs. Our algorithm takes the hierarchybased approach invented by Thorup. Key words. singlesource shortest paths, allpairs shortest paths, undirected graphs, Dijkstra’s