Results 1  10
of
18
Shortest Paths Algorithms: Theory And Experimental Evaluation
 Mathematical Programming
, 1993
"... . We conduct an extensive computational study of shortest paths algorithms, including some very recent algorithms. We also suggest new algorithms motivated by the experimental results and prove interesting theoretical results suggested by the experimental data. Our computational study is based on se ..."
Abstract

Cited by 144 (14 self)
 Add to MetaCart
. We conduct an extensive computational study of shortest paths algorithms, including some very recent algorithms. We also suggest new algorithms motivated by the experimental results and prove interesting theoretical results suggested by the experimental data. Our computational study is based on several natural problem classes which identify strengths and weaknesses of various algorithms. These problem classes and algorithm implementations form an environment for testing the performance of shortest paths algorithms. The interaction between the experimental evaluation of algorithm behavior and the theoretical analysis of algorithm performance plays an important role in our research. Andrew V. Goldberg was supported in part by ONR Young Investigator Award N0001491J1855, NSF Presidential Young Investigator Grant CCR8858097 with matching funds from AT&T, DEC, and 3M, and a grant from Powell Foundation. This work was done while Boris V. Cherkassky was visiting Stanford University Compu...
Shortest path algorithms: An evaluation using real road networks
 Transportation Science
, 1998
"... The classic problem of finding the shortest path over a network has been the target of many research efforts over the years. These research efforts have resulted in a number of different algorithms and a considerable amount of empirical findings with respect to performance. Unfortunately, prior rese ..."
Abstract

Cited by 58 (1 self)
 Add to MetaCart
The classic problem of finding the shortest path over a network has been the target of many research efforts over the years. These research efforts have resulted in a number of different algorithms and a considerable amount of empirical findings with respect to performance. Unfortunately, prior research does not provide a clear direction for choosing an algorithm when one faces the problem of computing shortest paths on real road networks. Most of the computational testing on shortest path algorithms has been based on randomly generated networks, which may not have the characteristics of real road networks. In this paper, we provide an objective evaluation of 15 shortest path algorithms using a variety of real road networks. Based on the evaluation, a set of recommended algorithms for computing shortest paths on real road networks is identified. This evaluation should be particularly useful to researchers and practitioners in operations research, management science, transportation, and Geographic Information Systems. The computation of shortest paths is an important task in many network and transportation related analyses. The development, computational testing, and efficient implementation of shortest path algorithms have remained important research topics within related disciplines such as operations
Shortest Path Algorithms in Transportation Models: Classical and Innovative Aspects
, 1998
"... Shortest Path Problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is transportation, where shortest path problems of different kinds need to be solved. Due to the nature of the application, transportation scientists ..."
Abstract

Cited by 51 (3 self)
 Add to MetaCart
Shortest Path Problems are among the most studied network flow optimization problems, with interesting applications in various fields. One such field is transportation, where shortest path problems of different kinds need to be solved. Due to the nature of the application, transportation scientists need very flexible and efficient shortest path procedures, both from the running time point of view, and also for the memory requirements. Since no "best" algorithm currently exists for every kind of transportation problem, research in this field has recently moved to the design and implementation of "ad hoc" shortest path procedures, which are able to capture the peculiarities of the problems under consideration. The aim of this work is to present in a unifying framework both the main algorithmic approaches that have been proposed in the past years for solving the shortest path problems arising most frequently in the transportation field, and also some important implementation techniques ...
NegativeCycle Detection Algorithms
 MATHEMATICAL PROGRAMMING
, 1996
"... We study the problem of finding a negative length cycle in a network. An algorithm for the negative cycle problem combines a shortest path algorithm and a cycle detection strategy. We study various combinations of shortest path algorithms and cycle detection strategies and find the best combinations ..."
Abstract

Cited by 46 (5 self)
 Add to MetaCart
We study the problem of finding a negative length cycle in a network. An algorithm for the negative cycle problem combines a shortest path algorithm and a cycle detection strategy. We study various combinations of shortest path algorithms and cycle detection strategies and find the best combinations. One of our discoveries is that a cycle detection strategy of Tarjan greatly improves practical performance of a classical shortest path algorithm, making it competitive with the fastest known algorithms on a wide range of problems. As a part of our study, we develop problem families for testing negative cycle algorithms.
A Simple Shortest Path Algorithm with Linear Average Time
"... We present a simple shortest path algorithm. If the input lengths are positive and uniformly distributed, the algorithm runs in linear time. The worstcase running time of the algorithm is O(m + n log C), where n and m are the number of vertices and arcs of the input graph, respectively, and C i ..."
Abstract

Cited by 34 (6 self)
 Add to MetaCart
We present a simple shortest path algorithm. If the input lengths are positive and uniformly distributed, the algorithm runs in linear time. The worstcase running time of the algorithm is O(m + n log C), where n and m are the number of vertices and arcs of the input graph, respectively, and C is the ratio of the largest and the smallest nonzero arc length.
Shortest Path Algorithms: Engineering Aspects
 In Proc. ESAAC ’01, Lecture Notes in Computer Science
, 2001
"... We review shortest path algorithms based on the multilevel bucket data structure [6] and discuss the interplay between theory and engineering choices that leads to e#cient implementations. Our experimental results suggest that the caliber heuristic [17] and adaptive parameter selection give an ..."
Abstract

Cited by 20 (3 self)
 Add to MetaCart
We review shortest path algorithms based on the multilevel bucket data structure [6] and discuss the interplay between theory and engineering choices that leads to e#cient implementations. Our experimental results suggest that the caliber heuristic [17] and adaptive parameter selection give an e#cient algorithm, both on typical and on hard inputs, for a wide range of arc lengths.
Parallel Shortest Path Algorithms for Solving . . .
, 2006
"... We present an experimental study of the single source shortest path problem with nonnegative edge weights (NSSP) on largescale graphs using the ∆stepping parallel algorithm. We report performance results on the Cray MTA2, a multithreaded parallel computer. The MTA2 is a highend shared memory s ..."
Abstract

Cited by 9 (3 self)
 Add to MetaCart
We present an experimental study of the single source shortest path problem with nonnegative edge weights (NSSP) on largescale graphs using the ∆stepping parallel algorithm. We report performance results on the Cray MTA2, a multithreaded parallel computer. The MTA2 is a highend shared memory system offering two unique features that aid the efficient parallel implementation of irregular algorithms: the ability to exploit finegrained parallelism, and lowoverhead synchronization primitives. Our implementation exhibits remarkable parallel speedup when compared with competitive sequential algorithms, for lowdiameter sparse graphs. For instance, ∆stepping on a directed scalefree graph of 100 million vertices and 1 billion edges takes less than ten seconds on 40 processors of the MTA2, with a relative speedup of close to 30. To our knowledge, these are the first performance results of a shortest path problem on realistic graph instances in the order of billions of vertices and edges.
Choosing a Shortest Path Algorithm
, 1995
"... Computation of shortest paths is an integral component of many applications such as transportation planning and VLSI design. Frequently, a shortest path algorithm is selected for a given application based on the performance of the algorithm for a set of test networks. The performance of this algorit ..."
Abstract

Cited by 5 (4 self)
 Add to MetaCart
Computation of shortest paths is an integral component of many applications such as transportation planning and VLSI design. Frequently, a shortest path algorithm is selected for a given application based on the performance of the algorithm for a set of test networks. The performance of this algorithm, however, can be significantly different for networks not included in the test set. Therefore, it is necessary to recognize when an algorithm has poor performance. In this paper, we develop a theoretical indicator, H that can be used to identify algorithms with poor performance. We show that using this theoretical guideline can result in reducing execution time significantly for various transportation networks. 1 Introduction Significant research has focused on developing fast shortest path algorithms. The relative performance of these algorithms, however, varies considerably for different networks, thereby making algorithm selection difficult. To address this problem, we derive a theo...
A Practical Shortest Path Algorithm with Linear Expected Time
 SUBMITTED TO SIAM J. ON COMPUTING
, 2001
"... We present an improvement of the multilevel bucket shortest path algorithm of Denardo and Fox [9] and justify this improvement, both theoretically and experimentally. We prove that if the input arc lengths come from a natural probability distribution, the new algorithm runs in linear average time ..."
Abstract

Cited by 3 (1 self)
 Add to MetaCart
We present an improvement of the multilevel bucket shortest path algorithm of Denardo and Fox [9] and justify this improvement, both theoretically and experimentally. We prove that if the input arc lengths come from a natural probability distribution, the new algorithm runs in linear average time while the original algorithm does not. We also describe an implementation of the new algorithm. Our experimental data suggests that the new algorithm is preferable to the original one in practice. Furthermore, for integral arc lengths that fit into a word of today's computers, the performance is close to that of breadthfirst search, suggesting limitations on further practical improvements.