Results 11  20
of
261
A PrimalDual Potential Reduction Method for Problems Involving Matrix Inequalities
 in Protocol Testing and Its Complexity&quot;, Information Processing Letters Vol.40
, 1995
"... We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga and Todd's method for linear programming. A worstcase analysis shows that the number of iterat ..."
Abstract

Cited by 86 (21 self)
 Add to MetaCart
We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga and Todd's method for linear programming. A worstcase analysis shows that the number of iterations grows as the square root of the problem size, but in practice it appears to grow more slowly. As in other interiorpoint methods the overall computational effort is therefore dominated by the leastsquares system that must be solved in each iteration. A type of conjugategradient algorithm can be used for this purpose, which results in important savings for two reasons. First, it allows us to take advantage of the special structure the problems often have (e.g., Lyapunov or algebraic Riccati inequalities). Second, we show that the polynomial bound on the number of iterations remains valid even if the conjugategradient algorithm is not run until completion, which in practice can greatly reduce the computational effort per iteration.
A robust minimax approach to classification
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2002
"... When constructing a classifier, the probability of correct classification of future data points should be maximized. We consider a binary classification problem where the mean and covariance matrix of each class are assumed to be known. No further assumptions are made with respect to the classcondi ..."
Abstract

Cited by 67 (7 self)
 Add to MetaCart
When constructing a classifier, the probability of correct classification of future data points should be maximized. We consider a binary classification problem where the mean and covariance matrix of each class are assumed to be known. No further assumptions are made with respect to the classconditional distributions. Misclassification probabilities are then controlled in a worstcase setting: that is, under all possible choices of classconditional densities with given mean and covariance matrix, we minimize the worstcase (maximum) probability of misclassification of future data points. For a linear decision boundary, this desideratum is translated in a very direct way into a (convex) second order cone optimization problem, with complexity similar to a support vector machine problem. The minimax problem can be interpreted geometrically as minimizing the maximum of the Mahalanobis distances to the two classes. We address the issue of robustness with respect to estimation errors (in the means and covariances of the
Method of centers for minimizing generalized eigenvalues
 Linear Algebra Appl
, 1993
"... We consider the problem of minimizing the largest generalized eigenvalue of a pair of symmetric matrices, each of which depends affinely on the decision variables. Although this problem may appear specialized, it is in fact quite general, and includes for example all linear, quadratic, and linear fr ..."
Abstract

Cited by 61 (12 self)
 Add to MetaCart
We consider the problem of minimizing the largest generalized eigenvalue of a pair of symmetric matrices, each of which depends affinely on the decision variables. Although this problem may appear specialized, it is in fact quite general, and includes for example all linear, quadratic, and linear fractional programs. Many problems arising in control theory can be cast in this form. The problem is nondifferentiable but quasiconvex, so methods such as Kelley's cuttingplane algorithm or the ellipsoid algorithm of Shor, Nemirovksy, and Yudin are guaranteed to minimize it. In this paper we describe relevant background material and a simple interior point method that solves such problems more efficiently. The algorithm is a variation on Huard's method of centers, using a selfconcordant barrier for matrix inequalities developed by Nesterov and Nemirovsky. (Nesterov and Nemirovsky have also extended their potential reduction methods to handle the same problem [NN91b].) Since the problem is quasiconvex but not convex, devising a nonheuristic stopping criterion (i.e., one that guarantees a given accuracy) is more difficult than in the convex case. We describe several nonheuristic stopping criteria that are based on the dual of a related convex problem and a new ellipsoidal approximation that is slightly sharper, in some cases, than a more general result due to Nesterov and Nemirovsky. The algorithm is demonstrated on an example: determining the quadratic Lyapunov function that optimizes a decay rate estimate for a differential inclusion.
Robust Solutions To Uncertain Semidefinite Programs
, 1998
"... In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values ..."
Abstract

Cited by 58 (2 self)
 Add to MetaCart
In this paper we consider semidenite programs (SDPs) whose data depends on some unknownbutbounded perturbation parameters. We seek "robust" solutions to such programs, that is, solutions which minimize the (worstcase) objective while satisfying the constraints for every possible values of parameters within the given bounds. Assuming the data matrices are rational functions of the perturbation parameters, we show how to formulate sufficient conditions for a robust solution to exist, as SDPs. When the perturbation is "full", our conditions are necessary and sufficient. In this case, we provide sufficient conditions which guarantee that the robust solution is unique, and continuous (Hölderstable) with respect to the unperturbed problems' data. The approach can thus be used to regularize illconditioned SDPs. We illustrate our results with examples taken from linear programming, maximum norm minimization, polynomial interpolation and integer programming.
An interiorpoint method for largescale ℓ1regularized logistic regression
 JOURNAL OF MACHINE LEARNING RESEARCH
, 2007
"... Recently, a lot of attention has been paid to ℓ1regularization based methods for sparse signal reconstruction (e.g., basis pursuit denoising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as ..."
Abstract

Cited by 56 (4 self)
 Add to MetaCart
Recently, a lot of attention has been paid to ℓ1regularization based methods for sparse signal reconstruction (e.g., basis pursuit denoising and compressed sensing) and feature selection (e.g., the Lasso algorithm) in signal processing, statistics, and related fields. These problems can be cast as ℓ1regularized leastsquares programs (LSPs), which can be reformulated as convex quadratic programs, and then solved by several standard methods such as interiorpoint methods, at least for small and medium size problems. In this paper, we describe a specialized interiorpoint method for solving largescale ℓ1regularized LSPs that uses the preconditioned conjugate gradients algorithm to compute the search direction. The interiorpoint method can solve large sparse problems, with a million variables and observations, in a few tens of minutes on a PC. It can efficiently solve large dense problems, that arise in sparse signal recovery with orthogonal transforms, by exploiting fast algorithms for these transforms. The method is illustrated on a magnetic resonance imaging data set.
Symmetric PrimalDual Path Following Algorithms for Semidefinite Programming
, 1996
"... In this paper a symmetric primaldual transformation for positive semidefinite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primaldual tran ..."
Abstract

Cited by 54 (10 self)
 Add to MetaCart
In this paper a symmetric primaldual transformation for positive semidefinite programming is proposed. For standard SDP problems, after this symmetric transformation the primal variables and the dual slacks become identical. In the context of linear programming, existence of such a primaldual transformation is a well known fact. Based on this symmetric primaldual transformation we derive Newton search directions for primaldual pathfollowing algorithms for semidefinite programming. In particular, we generalize: (1) the short step path following algorithm, (2) the predictorcorrector algorithm and (3) the largest step algorithm to semidefinite programming. It is shown that these algorithms require at most O( p n j log ffl j) main iterations for computing an ffloptimal solution. The symmetric primaldual transformation discussed in this paper can be interpreted as a specialization of the scalingpoint concept introduced by Nesterov and Todd [12] for selfscaled conic problems. The ...
Optimal design of a CMOS opamp via geometric programming
 IEEE Transactions on ComputerAided Design
, 2001
"... We describe a new method for determining component values and transistor dimensions for CMOS operational ampli ers (opamps). We observe that a wide variety of design objectives and constraints have a special form, i.e., they are posynomial functions of the design variables. As a result the ampli er ..."
Abstract

Cited by 54 (10 self)
 Add to MetaCart
We describe a new method for determining component values and transistor dimensions for CMOS operational ampli ers (opamps). We observe that a wide variety of design objectives and constraints have a special form, i.e., they are posynomial functions of the design variables. As a result the ampli er design problem can be expressed as a special form of optimization problem called geometric programming, for which very e cient global optimization methods have been developed. As a consequence we can e ciently determine globally optimal ampli er designs, or globally optimal tradeo s among competing performance measures such aspower, openloop gain, and bandwidth. Our method therefore yields completely automated synthesis of (globally) optimal CMOS ampli ers, directly from speci cations. In this paper we apply this method to a speci c, widely used operational ampli er architecture, showing in detail how to formulate the design problem as a geometric program. We compute globally optimal tradeo curves relating performance measures such as power dissipation, unitygain bandwidth, and openloop gain. We show how the method can be used to synthesize robust designs, i.e., designs guaranteed to meet the speci cations for a
Derivatives of Spectral Functions
, 1996
"... A spectral function of a Hermitian matrix X is a function which depends only on the eigenvalues of X , 1 (X) 2 (X) : : : n (X), and hence may be written f( 1 (X); 2 (X); : : : ; n (X)) for some symmetric function f . Such functions appear in a wide variety of matrix optimization problems. We ..."
Abstract

Cited by 46 (11 self)
 Add to MetaCart
A spectral function of a Hermitian matrix X is a function which depends only on the eigenvalues of X , 1 (X) 2 (X) : : : n (X), and hence may be written f( 1 (X); 2 (X); : : : ; n (X)) for some symmetric function f . Such functions appear in a wide variety of matrix optimization problems. We give a simple proof that this spectral function is differentiable at X if and only if the function f is differentiable at the vector (X), and we give a concise formula for the derivative. We then apply this formula to deduce an analogous expression for the Clarke generalized gradient of the spectral function. A similar result holds for real symmetric matrices. 1 Introduction and notation Optimization problems involving a symmetric matrix variable, X say, frequently involve symmetric functions of the eigenvalues of X in the objective or constraints. Examples include the maximum eigenvalue of X, or log(det X) (for positive definite X), or eigenvalue constraints such as positive semidefinit...
Receding Horizon Control of Nonlinear Systems: A Control . . .
, 2000
"... n Automatic Control, pages 898 907, 1990. J. Shamma and M. Athans. Guaranteed properties of gain scheduled control for linear parametervarying plants. Automatica, pages 559 564, 1991. J. Shamma and M. Athans. Gainscheduling: Potential hazards and possible remedies. IEEE Control Systems Magazine, ..."
Abstract

Cited by 44 (4 self)
 Add to MetaCart
n Automatic Control, pages 898 907, 1990. J. Shamma and M. Athans. Guaranteed properties of gain scheduled control for linear parametervarying plants. Automatica, pages 559 564, 1991. J. Shamma and M. Athans. Gainscheduling: Potential hazards and possible remedies. IEEE Control Systems Magazine, 12(3):101 107, June 1992. [Sch96] A. Schwartz. Theory and Implementation of Numerical Methods Based on RungeKutta Integration for Optimal Control Problems. PhD Disser tation, University of California, Berkeley, 1996. [SCH+00] M. Sznaier, J. Cloutier, R. Hull, D. Jacques, and C. Mracek. Reced ing horizon control lyapunov function approach to suboptimal regula tion of nonlinear systems. Journal of Guidance, Control, and Dynamics, 23(3):399 405, 2000. [SD90] M. Sznaier and M. J. Damborg. Heuristically enhanced feedback con trol of constrained discretetime linear systems. Automatica, 26:521 532, 1990. [SMR99] P. Scokaert, D. Mayne, and J. Rawlings. Suboptimal model predictive cont
Convex analysis on the Hermitian matrices
 SIAM Journal on Optimization
, 1996
"... There is growing interest in optimization problems with real symmetric matrices as variables. Generally the matrix functions involved are spectral: they depend only on the eigenvalues of the matrix. It is known that convex spectral functions can be characterized exactly as symmetric convex functions ..."
Abstract

Cited by 42 (17 self)
 Add to MetaCart
There is growing interest in optimization problems with real symmetric matrices as variables. Generally the matrix functions involved are spectral: they depend only on the eigenvalues of the matrix. It is known that convex spectral functions can be characterized exactly as symmetric convex functions of the eigenvalues. A new approach to this characterization is given, via a simple Fenchel conjugacy formula. We then apply this formula to derive expressions for subdifferentials, and to study duality relationships for convex optimization problems with positive semidefinite matrices as variables. Analogous results hold for Hermitian matrices. Key Words: convexity, matrix function, Schur convexity, Fenchel duality, subdifferential, unitarily invariant, spectral function, positive semidefinite programming, quasiNewton update. AMS 1991 Subject Classification: Primary 15A45 49N15 Secondary 90C25 65K10 1 Introduction A matrix norm on the n \Theta n complex matrices is called unitarily inv...