Results 1 
2 of
2
Higher correlations of divisor sums related to primes, II: Variations of . . .
, 2007
"... We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the ..."
Abstract

Cited by 31 (6 self)
 Add to MetaCart
(Show Context)
We calculate the triple correlations for the truncated divisor sum λR(n). The λR(n) behave over certain averages just as the prime counting von Mangoldt function Λ(n) does or is conjectured to do. We also calculate the mixed (with a factor of Λ(n)) correlations. The results for the moments up to the third degree, and therefore the implications for the distribution of primes in short intervals, are the same as those we obtained (in the first paper with this title) by using the simpler approximation ΛR(n). However, when λR(n) is used, the error in the singular series approximation is often much smaller than what ΛR(n) allows. Assuming the Generalized Riemann Hypothesis (GRH) for Dirichlet Lfunctions, we obtain an Ω±result for the variation of the error term in the prime number theorem. Formerly, our knowledge under GRH was restricted to Ωresults for the absolute value of this variation. An important ingredient in the last part of this work is a recent result due to Montgomery and Soundararajan which makes it possible for us to dispense with a large error term in the evaluation of a certain singular series average. We believe that our results on the sums λR(n) and ΛR(n) can be employed in diverse problems concerning primes.
Pair correlation of the zeros of the derivative of the Riemann ξfunction
, 2008
"... The complex zeros of the Riemannn zetafunction are identical to the zeros of the Riemann xifunction, ξ(s). Thus, if the Riemann Hypothesis is true for the zetafunction, it is true for ξ(s). Since ξ(s) is entire, the zeros of ξ ′ (s), its derivative, would then also satisfy a Riemann Hypothesis. ..."
Abstract

Cited by 2 (1 self)
 Add to MetaCart
The complex zeros of the Riemannn zetafunction are identical to the zeros of the Riemann xifunction, ξ(s). Thus, if the Riemann Hypothesis is true for the zetafunction, it is true for ξ(s). Since ξ(s) is entire, the zeros of ξ ′ (s), its derivative, would then also satisfy a Riemann Hypothesis. We investigate the pair correlation function of the zeros of ξ′(s) under the assumption that the Riemann Hypothesis is true. We then deduce consequences about the size of gaps between these zeros and the proportion of these zeros that are simple.