Results 1  10
of
110
Reinforcement learning: a survey
 Journal of Artificial Intelligence Research
, 1996
"... This paper surveys the field of reinforcement learning from a computerscience perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem ..."
Abstract

Cited by 1690 (26 self)
 Add to MetaCart
(Show Context)
This paper surveys the field of reinforcement learning from a computerscience perspective. It is written to be accessible to researchers familiar with machine learning. Both the historical basis of the field and a broad selection of current work are summarized. Reinforcement learning is the problem faced by an agent that learns behavior through trialanderror interactions with a dynamic environment. The work described here has a resemblance to work in psychology, but differs considerably in the details and in the use of the word "reinforcement." The paper discusses central issues of reinforcement learning, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state. It concludes with a survey of some implemented systems and an assessment of the practical utility of current methods for reinforcement learning.
Planning and acting in partially observable stochastic domains
 ARTIFICIAL INTELLIGENCE
, 1998
"... In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm ..."
Abstract

Cited by 1089 (42 self)
 Add to MetaCart
(Show Context)
In this paper, we bring techniques from operations research to bear on the problem of choosing optimal actions in partially observable stochastic domains. We begin by introducing the theory of Markov decision processes (mdps) and partially observable mdps (pomdps). We then outline a novel algorithm for solving pomdps offline and show how, in some cases, a finitememory controller can be extracted from the solution to a pomdp. We conclude with a discussion of how our approach relates to previous work, the complexity of finding exact solutions to pomdps, and of some possibilities for finding approximate solutions.
Locally weighted learning
 ARTIFICIAL INTELLIGENCE REVIEW
, 1997
"... This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, ass ..."
Abstract

Cited by 594 (53 self)
 Add to MetaCart
This paper surveys locally weighted learning, a form of lazy learning and memorybased learning, and focuses on locally weighted linear regression. The survey discusses distance functions, smoothing parameters, weighting functions, local model structures, regularization of the estimates and bias, assessing predictions, handling noisy data and outliers, improving the quality of predictions by tuning t parameters, interference between old and new data, implementing locally weighted learning e ciently, and applications of locally weighted learning. A companion paper surveys how locally weighted learning can be used in robot learning and control.
DecisionTheoretic Planning: Structural Assumptions and Computational Leverage
 JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH
, 1999
"... Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives ..."
Abstract

Cited by 510 (4 self)
 Add to MetaCart
(Show Context)
Planning under uncertainty is a central problem in the study of automated sequential decision making, and has been addressed by researchers in many different fields, including AI planning, decision analysis, operations research, control theory and economics. While the assumptions and perspectives adopted in these areas often differ in substantial ways, many planning problems of interest to researchers in these fields can be modeled as Markov decision processes (MDPs) and analyzed using the techniques of decision theory. This paper presents an overview and synthesis of MDPrelated methods, showing how they provide a unifying framework for modeling many classes of planning problems studied in AI. It also describes structural properties of MDPs that, when exhibited by particular classes of problems, can be exploited in the construction of optimal or approximately optimal policies or plans. Planning problems commonly possess structure in the reward and value functions used to de...
Algorithms for Sequential Decision Making
, 1996
"... Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of ..."
Abstract

Cited by 212 (8 self)
 Add to MetaCart
(Show Context)
Sequential decision making is a fundamental task faced by any intelligent agent in an extended interaction with its environment; it is the act of answering the question "What should I do now?" In this thesis, I show how to answer this question when "now" is one of a finite set of states, "do" is one of a finite set of actions, "should" is maximize a longrun measure of reward, and "I" is an automated planning or learning system (agent). In particular,
Locally Weighted Learning for Control
, 1996
"... Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We ex ..."
Abstract

Cited by 197 (19 self)
 Add to MetaCart
Lazy learning methods provide useful representations and training algorithms for learning about complex phenomena during autonomous adaptive control of complex systems. This paper surveys ways in which locally weighted learning, a type of lazy learning, has been applied by us to control tasks. We explain various forms that control tasks can take, and how this affects the choice of learning paradigm. The discussion section explores the interesting impact that explicitly remembering all previous experiences has on the problem of learning to control.
EXACT AND APPROXIMATE ALGORITHMS FOR PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES
, 1998
"... Automated sequential decision making is crucial in many contexts. In the face of uncertainty, this task becomes even more important, though at the same time, computing optimal decision policies becomes more complex. The more sources of uncertainty there are, the harder the problem becomes to solve. ..."
Abstract

Cited by 183 (2 self)
 Add to MetaCart
Automated sequential decision making is crucial in many contexts. In the face of uncertainty, this task becomes even more important, though at the same time, computing optimal decision policies becomes more complex. The more sources of uncertainty there are, the harder the problem becomes to solve. In this work, we look at sequential decision making in environments where the actions have probabilistic outcomes and in which the system state is only partially observable. We focus on using a model called a partially observable Markov decision process (POMDP) and explore algorithms which address computing both optimal and approximate policies for use in controlling processes that are modeled using POMDPs. Although solving for the optimal policy is PSPACEcomplete (or worse), the study and improvements of exact algorithms lends insight into the optimal solution structure as well as providing a basis for approximate solutions. We present some improvements, analysis and empirical comparisons for some existing and some novel approaches for computing the optimal POMDP policy exactly. Since it is also hard (NPcomplete or worse) to derive close approximations to the optimal solution for POMDPs, we consider a number of approaches for deriving policies that yield suboptimal control and empirically explore their performance on a range of problems. These approaches
Valuefunction approximations for partially observable Markov decision processes
 Journal of Artificial Intelligence Research
, 2000
"... Partially observable Markov decision processes (POMDPs) provide an elegant mathematical framework for modeling complex decision and planning problems in stochastic domains in which states of the system are observable only indirectly, via a set of imperfect or noisy observations. The modeling advanta ..."
Abstract

Cited by 168 (1 self)
 Add to MetaCart
(Show Context)
Partially observable Markov decision processes (POMDPs) provide an elegant mathematical framework for modeling complex decision and planning problems in stochastic domains in which states of the system are observable only indirectly, via a set of imperfect or noisy observations. The modeling advantage of POMDPs, however, comes at a price — exact methods for solving them are computationally very expensive and thus applicable in practice only to very simple problems. We focus on efficient approximation (heuristic) methods that attempt to alleviate the computational problem and trade off accuracy for speed. We have two objectives here. First, we survey various approximation methods, analyze their properties and relations and provide some new insights into their differences. Second, we present a number of new approximation methods and novel refinements of existing techniques. The theoretical results are supported by experiments on a problem from the agent navigation domain. 1.
MachineLearning Research  Four Current Directions
"... Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up super ..."
Abstract

Cited by 144 (1 self)
 Add to MetaCart
Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classification accuracy by learning ensembles of classifiers, (b) methods for scaling up supervised learning algorithms, (c) reinforcement learning, and (d) learning complex stochastic models.
Evolutionary function approximation for reinforcement learning
 Journal of Machine Learning Research
, 2006
"... Ø�ÓÒ�ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÒÓÚ�Ð�ÔÔÖÓ��ØÓ�ÙØÓÑ�Ø��ÐÐÝ× � Ø�ÓÒ�Ð���×�ÓÒ×Ì��×Ø��×�×�ÒÚ�×Ø���Ø�×�ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒ �Ò�ÓÖ�Ñ�ÒØÐ��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ö�Ø��×Ù�×�ØÓ�Ø��×�Ø�×� × ÁÒÑ�ÒÝÑ���Ò�Ð��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ò���ÒØÑÙ×ØÐ��ÖÒ Ñ�ÒØ���Ò×Ø�ÒØ��Ø�ÓÒÓ��ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ � Ù�Ð×Ø��Ø�Ö���ØØ�Ö��Ð�ØÓÐ��ÖÒÁÔÖ�×�ÒØ��ÙÐÐÝ�ÑÔÐ � Ø�Ó ..."
Abstract

Cited by 106 (16 self)
 Add to MetaCart
(Show Context)
Ø�ÓÒ�ÔÔÖÓÜ�Ñ�Ø�ÓÒ�ÒÓÚ�Ð�ÔÔÖÓ��ØÓ�ÙØÓÑ�Ø��ÐÐÝ× � Ø�ÓÒ�Ð���×�ÓÒ×Ì��×Ø��×�×�ÒÚ�×Ø���Ø�×�ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒ �Ò�ÓÖ�Ñ�ÒØÐ��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ö�Ø��×Ù�×�ØÓ�Ø��×�Ø�×� × ÁÒÑ�ÒÝÑ���Ò�Ð��ÖÒ�Ò�ÔÖÓ�Ð�Ñ×�Ò���ÒØÑÙ×ØÐ��ÖÒ Ñ�ÒØ���Ò×Ø�ÒØ��Ø�ÓÒÓ��ÚÓÐÙØ�ÓÒ�ÖÝ�ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ � Ù�Ð×Ø��Ø�Ö���ØØ�Ö��Ð�ØÓÐ��ÖÒÁÔÖ�×�ÒØ��ÙÐÐÝ�ÑÔÐ � Ø�ÓÒÛ���ÓÑ��Ò�×Æ��Ì�Ò�ÙÖÓ�ÚÓÐÙØ�ÓÒ�ÖÝÓÔØ�Ñ�Þ � Ð�Ø�Ò��ÙÒØ�ÓÒ�ÔÔÖÓÜ�Ñ�ØÓÖÖ�ÔÖ�×�ÒØ�Ø�ÓÒ×Ø��Ø�Ò��Ð� Ø�ÓÒØ��Ò�ÕÙ�Û�Ø�ÉÐ��ÖÒ�Ò��ÔÓÔÙÐ�ÖÌ�Ñ�Ø�Ó�Ì� � �Æ��ÒØ�Ò��Ú��Ù�ÐÐ��ÖÒ�Ò�Ì��×Ñ�Ø�Ó��ÚÓÐÚ�×�Ò��Ú� � ÓÔØ�Ñ�Þ�Ø�ÓÒ��ÐÐ�ÒØ��×�Ø��ÓÖÝ��Ú�ÐÓÔ�Ò��«�Ø�Ú�Ö��Ò �ÓÖÁÒ×Ø����ØÖ���Ú�×ÓÒÐÝÔÓ×�Ø�Ú��Ò�Ò���Ø�Ú�Ö�Û�Ö� × ÔÖÓ�Ð�Ñ××Ù��×ÖÓ�ÓØÓÒØÖÓÐ��Ñ�ÔÐ�Ý�Ò��Ò�×Ý×Ø�Ñ �ÒÛ���Ø�����ÒØÒ�Ú�Ö×��×�Ü�ÑÔÐ�×Ó�ÓÖÖ�Ø����Ú 1.