Results 1 
1 of
1
Spectral properties of random nonselfadjoint matrices and operators
, 2001
"... We describe some numerical experiments which determine the degree of spectral instability of medium size randomly generated matrices which are far from selfadjoint. The conclusion is that the eigenvalues are likely to be intrinsically uncomputable for similar matrices of a larger size. We also desc ..."
Abstract

Cited by 7 (4 self)
 Add to MetaCart
We describe some numerical experiments which determine the degree of spectral instability of medium size randomly generated matrices which are far from selfadjoint. The conclusion is that the eigenvalues are likely to be intrinsically uncomputable for similar matrices of a larger size. We also describe a stochastic family of bounded operators in infinite dimensions for almost all of which the eigenvectors generate a dense linear subspace, but the eigenvalues do not determine the spectrum. Our results imply that the spectrum of the nonselfadjoint Anderson model changes suddenly as one passes to the infinite volume limit.