Results 1  10
of
71
Bohmian mechanics as the foundation of quantum mechanics
"... In order to arrive at Bohmian mechanics from standard nonrelativistic quantum mechanics one need do almost nothing! One need only complete the usual quantum description in what is really the most obvious way: by simply including the positions of the particles of a quantum system as part of the state ..."
Abstract

Cited by 42 (13 self)
 Add to MetaCart
In order to arrive at Bohmian mechanics from standard nonrelativistic quantum mechanics one need do almost nothing! One need only complete the usual quantum description in what is really the most obvious way: by simply including the positions of the particles of a quantum system as part of the state description of that system, allowing these positions to evolve in the most natural way. The entire quantum formalism, including the uncertainty principle and quantum randomness, emerges from an analysis of this evolution. This can be expressed succinctly—though in fact not succinctly enough—by declaring that the essential innovation of Bohmian mechanics is the insight that particles move! 1 Bohmian Mechanics is Minimal Is it not clear from the smallness of the scintillation on the screen that we have to do with a particle? And is it not clear, from the diffraction and interference 1 patterns, that the motion of the particle is directed by a wave? De Broglie showed in detail how the motion of a particle, passing through just one of two holes in screen, could be influenced by waves propagating through both holes.
Quantum Equilibrium and the Role of Operators as Observables in Quantum Theory
, 2003
"... Bohmian mechanics is the most naively obvious embedding imaginable of Schrödinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly nonNewtonian sort of way, one which may at first appear to have little to do with the spectrum of predict ..."
Abstract

Cited by 29 (14 self)
 Add to MetaCart
Bohmian mechanics is the most naively obvious embedding imaginable of Schrödinger’s equation into a completely coherent physical theory. It describes a world in which particles move in a highly nonNewtonian sort of way, one which may at first appear to have little to do with the spectrum of predictions of quantum mechanics. It turns out, however, that as a consequence of the defining dynamical equations of Bohmian mechanics, when a system has wave function ψ its configuration is typically random, with probability density ρ given by ψ², the quantum equilibrium distribution. It also turns out that the entire quantum formalism, operators as observables and all the rest, naturally emerges in Bohmian mechanics from the analysis of “measurements. ” This analysis reveals the status of operators as observables in the description of quantum phenomena, and facilitates a clear view of the range of applicability of the usual quantum mechanical formulas.
Consciousness and its place in nature
 In
, 2002
"... Consciousness fits uneasily into our conception of the natural world. On the most common conception of nature, the natural world is the physical world. But on the most common conception of consciousness, it is not easy to see how it could be part of the physical world. So it seems that to find a pla ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
Consciousness fits uneasily into our conception of the natural world. On the most common conception of nature, the natural world is the physical world. But on the most common conception of consciousness, it is not easy to see how it could be part of the physical world. So it seems that to find a place for consciousness within the natural order, we must either revise our conception of
On the Common Structure of Bohmian Mechanics and the GhirardiRiminiWeber Theory
, 2006
"... Bohmian mechanics and the Ghirardi–Rimini–Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonline ..."
Abstract

Cited by 18 (11 self)
 Add to MetaCart
Bohmian mechanics and the Ghirardi–Rimini–Weber theory provide opposite resolutions of the quantum measurement problem: the former postulates additional variables (the particle positions) besides the wave function, whereas the latter implements spontaneous collapses of the wave function by a nonlinear and stochastic modification of Schrödinger’s equation. Still, both theories, when understood appropriately, share the following structure: They are ultimately not about wave functions but about “matter” moving in space, represented by either particle trajectories, fields on spacetime, or a discrete set of spacetime points. The role of the wave function then is to govern the motion of the matter.
Interpreting the Quantum
, 1997
"... This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of informa ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
This paper is a commentary on the foundational significance of the CliftonBubHalvorson theorem characterizing quantum theory in terms of three informationtheoretic constraints. I argue that: (1) a quantum theory is best understood as a theory about the possibilities and impossibilities of information transfer, as opposed to a theory about the mechanics of nonclassical waves or particles, (2) given the informationtheoretic constraints, any mechanical theory of quantum phenomena that includes an account of the measuring instruments that reveal these phenomena must be empirically equivalent to a quantum theory, and (3) assuming the informationtheoretic constraints are in fact satisfied in our world, no mechanical theory of quantum phenomena that includes an account of measurement interactions can be acceptable, and the appropriate aim of physics at the fundamental level then becomes the representation and manipulation of information.
Science of Chaos or Chaos in Science?
, 1996
"... I try to clarify several confusions in the popular literature concerning chaos, determinism, the arrow of time, entropy and the role of probability in physics. Classical ideas going back to Laplace and Boltzmann are explained and defended while some recent views on irreversibility, due to Prigogine, ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
I try to clarify several confusions in the popular literature concerning chaos, determinism, the arrow of time, entropy and the role of probability in physics. Classical ideas going back to Laplace and Boltzmann are explained and defended while some recent views on irreversibility, due to Prigogine, are criticized.
EPRBell Nonlocality, Lorentz Invariance, and Bohmian Quantum Theory
, 1995
"... : We discuss the problem of finding a Lorentz invariant extension of Bohmian mechanics. Due to the nonlocality of the theory there is (for systems of more than one particle) no obvious way to achieve such an extension. We present a model invariant under a certain limit of Lorentz transformations, a ..."
Abstract

Cited by 12 (3 self)
 Add to MetaCart
: We discuss the problem of finding a Lorentz invariant extension of Bohmian mechanics. Due to the nonlocality of the theory there is (for systems of more than one particle) no obvious way to achieve such an extension. We present a model invariant under a certain limit of Lorentz transformations, a limit retaining the characteristic feature of relativity, the nonexistence of absolute time resp. simultaneity. The analysis of this model exemplifies an important property of any Bohmian quantum theory: the quantum equilibrium distribution ae = j/j 2 cannot simultaneously be realized in all Lorentz frames of reference. 1 Introduction Despite the impressive and unquestioned empirical success of quantum theory, the physical meaning of its basic object, the wave function, is still controversial. The standardor Copenhageninterpretation of quantum theory asserts that the wave function embodies the most complete description possible of the state of a physical system, while connecting it...
Dynamical Reduction Models
, 2003
"... The report presents an exhaustive review of the recent attempt to overcome the difficulties that standard quantum mechanics meets in accounting for the measurement (or macro–objectification) problem, an attempt based on the consideration of nonlinear and stochastic modifications of the Schrödinger e ..."
Abstract

Cited by 12 (0 self)
 Add to MetaCart
The report presents an exhaustive review of the recent attempt to overcome the difficulties that standard quantum mechanics meets in accounting for the measurement (or macro–objectification) problem, an attempt based on the consideration of nonlinear and stochastic modifications of the Schrödinger equation. The proposed new dynamics is characterized by the feature of not contradicting any known fact about microsystems and of accounting, on the basis of a unique, universal dynamical principle, for wavepacket reduction and for the classical behavior of macroscopic systems. We recall the motivations for the new approach and we briefly review the other proposals to circumvent the above mentioned difficulties which appeared in the literature. In this way we make clear the conceptual and historical context characterizing the new approach. After having reviewed the mathematical techniques (stochastic differential calculus) which are essential for the rigorous and precise formulation of the new dynamics, we discuss in great detail its implications and we stress its relevant
Visual Algorithm Simulation
, 2003
"... Understanding data structures and algorithms, both of which are abstract concepts, is an integral part of software engineering and elementary computer science education. However, people usually have difficulty in understanding abstract concepts and processes such as procedural encoding of algorithms ..."
Abstract

Cited by 11 (6 self)
 Add to MetaCart
Understanding data structures and algorithms, both of which are abstract concepts, is an integral part of software engineering and elementary computer science education. However, people usually have difficulty in understanding abstract concepts and processes such as procedural encoding of algorithms and data structures. One way to improve their understanding is to provide visualizations to make the abstract concepts more concrete. This thesis presents the design, implementation and evaluation for the Matrix application framework that occupies a unique niche between the following two domains. In the first domain, called algorithm animation, abstractions of the behavior of fundamental computer program operations are visualized. In the second domain, called algorithm simulation, the framework for exploring and understanding algorithms and data structures is exhibited. First, an overview and theoretical basis for the application framework is presented. Second, the different roles are defined and examined for realizing the idea of algorithm
12 On What Grounds What
"... Substance is the subject of our inquiry; for the principles and the causes we are seeking are those of substances. For if the universe is of the nature of a whole, substance is its first part;... —Aristotle(1984: 1688; Meta.1069a18–20) On the now dominant Quinean view, metaphysics is about what ther ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
Substance is the subject of our inquiry; for the principles and the causes we are seeking are those of substances. For if the universe is of the nature of a whole, substance is its first part;... —Aristotle(1984: 1688; Meta.1069a18–20) On the now dominant Quinean view, metaphysics is about what there is. Metaphysics so conceived is concerned with such questions as whether properties exist, whether meanings exist, and whether numbers exist. I will argue for the revival of a more traditional Aristotelian view, on which metaphysics is about what grounds what. Metaphysics so revived does not bother asking whether properties, meanings, and numbers exist. Of course they do! The question is whether or not they are fundamental. In §1 I will distinguish three conceptions of metaphysical structure. In §2 I will defend the Aristotelian view, coupled with a permissive line on existence. In §3 I will further develop a neoAristotelian framework, built around primitive grounding relations.