Results 1 
2 of
2
The primes contain arbitrarily long arithmetic progressions
 Ann. of Math
"... Abstract. We prove that there are arbitrarily long arithmetic progressions of primes. ..."
Abstract

Cited by 276 (35 self)
 Add to MetaCart
(Show Context)
Abstract. We prove that there are arbitrarily long arithmetic progressions of primes.
Linear equations in primes
 Annals of Mathematics
"... Abstract. Consider a system Ψ of nonconstant affinelinear forms ψ1,..., ψt: Z d → Z, no two of which are linearly dependent. Let N be a large integer, and let K ⊆ [−N, N] d be convex. A generalisation of a famous and difficult open conjecture of Hardy and Littlewood predicts an asymptotic, as N → ..."
Abstract

Cited by 83 (5 self)
 Add to MetaCart
(Show Context)
Abstract. Consider a system Ψ of nonconstant affinelinear forms ψ1,..., ψt: Z d → Z, no two of which are linearly dependent. Let N be a large integer, and let K ⊆ [−N, N] d be convex. A generalisation of a famous and difficult open conjecture of Hardy and Littlewood predicts an asymptotic, as N → ∞, for the number of integer points n ∈ Z d ∩ K for which the integers ψ1(n),..., ψt(n) are simultaneously prime. This implies many other wellknown conjectures, such as the twin prime conjecture and the (weak) Goldbach conjecture. It also allows one to count the number of solutions in a convex range to any simultaneous linear system of equations, in which all unknowns are required to be prime. In this paper we (conditionally) verify this asymptotic under the assumption that no two of the affinelinear forms ψ1,..., ψt are affinely related; this excludes the important “binary ” cases such as the twin prime or Goldbach conjectures, but does allow one to count “nondegenerate ” configurations such as arithmetic progressions. Our result assumes two families of conjectures, which we term the inverse Gowersnorm conjecture (GI(s)) and the Möbius and nilsequences conjecture (MN(s)), where s ∈ {1, 2,...} is