Results 1 
6 of
6
The primes contain arbitrarily long arithmetic progressions
 Ann. of Math
"... Abstract. We prove that there are arbitrarily long arithmetic progressions of primes. ..."
Abstract

Cited by 150 (26 self)
 Add to MetaCart
Abstract. We prove that there are arbitrarily long arithmetic progressions of primes.
UNIVERSAL CHARACTERISTIC FACTORS AND FURSTENBERG AVERAGES
, 2004
"... Let X = (X 0, B, µ, T) be an ergodic probability measure preserving system. For a natural number k we consider the averages N ∑ k ∏ 1 fj(T ..."
Abstract

Cited by 46 (2 self)
 Add to MetaCart
Let X = (X 0, B, µ, T) be an ergodic probability measure preserving system. For a natural number k we consider the averages N ∑ k ∏ 1 fj(T
The dichotomy between structure and randomness, arithmetic progressions, and the primes
"... Abstract. A famous theorem of Szemerédi asserts that all subsets of the integers with positive upper density will contain arbitrarily long arithmetic progressions. There are many different proofs of this deep theorem, but they are all based on a fundamental dichotomy between structure and randomness ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
Abstract. A famous theorem of Szemerédi asserts that all subsets of the integers with positive upper density will contain arbitrarily long arithmetic progressions. There are many different proofs of this deep theorem, but they are all based on a fundamental dichotomy between structure and randomness, which in turn leads (roughly speaking) to a decomposition of any object into a structured (lowcomplexity) component and a random (discorrelated) component. Important examples of these types of decompositions include the Furstenberg structure theorem and the Szemerédi regularity lemma. One recent application of this dichotomy is the result of Green and Tao establishing that the prime numbers contain arbitrarily long arithmetic progressions (despite having density zero in the integers). The power of this dichotomy is evidenced by the fact that the GreenTao theorem requires surprisingly little technology from analytic number theory, relying instead almost exclusively on manifestations of this dichotomy such as Szemerédi’s theorem. In this paper we survey various manifestations of this dichotomy in combinatorics, harmonic analysis, ergodic theory, and number theory. As we hope to emphasize here, the underlying themes in these arguments are remarkably similar even though the contexts are radically different. 1.