Results 1  10
of
12
The primes contain arbitrarily long arithmetic progressions
 Ann. of Math
"... Abstract. We prove that there are arbitrarily long arithmetic progressions of primes. ..."
Abstract

Cited by 150 (26 self)
 Add to MetaCart
Abstract. We prove that there are arbitrarily long arithmetic progressions of primes.
A quantitative ergodic theory proof of Szemerédi’s theorem
, 2004
"... A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combinato ..."
Abstract

Cited by 34 (14 self)
 Add to MetaCart
A famous theorem of Szemerédi asserts that given any density 0 < δ ≤ 1 and any integer k ≥ 3, any set of integers with density δ will contain infinitely many proper arithmetic progressions of length k. For general k there are essentially four known proofs of this fact; Szemerédi’s original combinatorial proof using the Szemerédi regularity lemma and van der Waerden’s theorem, Furstenberg’s proof using ergodic theory, Gowers’ proof using Fourier analysis and the inverse theory of additive combinatorics, and Gowers’ more recent proof using a hypergraph regularity lemma. Of these four, the ergodic theory proof is arguably the shortest, but also the least elementary, requiring in particular the use of transfinite induction (and thus the axiom of choice), decomposing a general ergodic system as the weakly mixing extension of a transfinite tower of compact extensions. Here we present a quantitative, selfcontained version of this ergodic theory proof, and which is “elementary ” in the sense that it does not require the axiom of choice, the use of infinite sets or measures, or the use of the Fourier transform or inverse theorems from additive combinatorics. It also gives explicit (but extremely poor) quantitative bounds.
The primes contain arbitrarily long polynomial progressions
 Acta Math
"... Abstract. We establish the existence of infinitely many polynomial progressions in the primes; more precisely, given any integervalued polynomials P1,..., Pk ∈ Z[m] in one unknown m with P1(0) =... = Pk(0) = 0 and any ε> 0, we show that there are infinitely many integers x, m with 1 ≤ m ≤ x ε suc ..."
Abstract

Cited by 30 (4 self)
 Add to MetaCart
Abstract. We establish the existence of infinitely many polynomial progressions in the primes; more precisely, given any integervalued polynomials P1,..., Pk ∈ Z[m] in one unknown m with P1(0) =... = Pk(0) = 0 and any ε> 0, we show that there are infinitely many integers x, m with 1 ≤ m ≤ x ε such that x+P1(m),..., x+Pk(m) are simultaneously prime. The arguments are based on those in [18], which treated the linear case Pi = (i − 1)m and ε = 1; the main new features are a localization of the shift parameters (and the attendant Gowers norm objects) to both coarse and fine scales, the use of PET induction to linearize the polynomial averaging, and some elementary estimates for the number of points over finite fields in certain algebraic varieties. Contents
The dichotomy between structure and randomness, arithmetic progressions, and the primes
"... Abstract. A famous theorem of Szemerédi asserts that all subsets of the integers with positive upper density will contain arbitrarily long arithmetic progressions. There are many different proofs of this deep theorem, but they are all based on a fundamental dichotomy between structure and randomness ..."
Abstract

Cited by 19 (1 self)
 Add to MetaCart
Abstract. A famous theorem of Szemerédi asserts that all subsets of the integers with positive upper density will contain arbitrarily long arithmetic progressions. There are many different proofs of this deep theorem, but they are all based on a fundamental dichotomy between structure and randomness, which in turn leads (roughly speaking) to a decomposition of any object into a structured (lowcomplexity) component and a random (discorrelated) component. Important examples of these types of decompositions include the Furstenberg structure theorem and the Szemerédi regularity lemma. One recent application of this dichotomy is the result of Green and Tao establishing that the prime numbers contain arbitrarily long arithmetic progressions (despite having density zero in the integers). The power of this dichotomy is evidenced by the fact that the GreenTao theorem requires surprisingly little technology from analytic number theory, relying instead almost exclusively on manifestations of this dichotomy such as Szemerédi’s theorem. In this paper we survey various manifestations of this dichotomy in combinatorics, harmonic analysis, ergodic theory, and number theory. As we hope to emphasize here, the underlying themes in these arguments are remarkably similar even though the contexts are radically different. 1.
A nonconventional ergodic theorem for a nilsystem
"... We prove a non conventional pointwise convergence theorem for a nilsystem, and give an explicit formula for the limit. ..."
Abstract

Cited by 14 (1 self)
 Add to MetaCart
We prove a non conventional pointwise convergence theorem for a nilsystem, and give an explicit formula for the limit.
The ergodic and combinatorial approaches to Szemerédi’s theorem
, 2006
"... Abstract. A famous theorem of Szemerédi asserts that any set of integers of positive upper density will contain arbitrarily long arithmetic progressions. In its full generality, we know of four types of arguments that can prove this theorem: the original combinatorial (and graphtheoretical) approac ..."
Abstract

Cited by 12 (2 self)
 Add to MetaCart
Abstract. A famous theorem of Szemerédi asserts that any set of integers of positive upper density will contain arbitrarily long arithmetic progressions. In its full generality, we know of four types of arguments that can prove this theorem: the original combinatorial (and graphtheoretical) approach of Szemerédi, the ergodic theory approach of Furstenberg, the Fourieranalytic approach of Gowers, and the hypergraph approach of NagleRödlSchachtSkokan and Gowers. In this lecture series we introduce the first, second and fourth approaches, though we will not delve into the full details of any of them. One of the themes of these lectures is the strong similarity of ideas between these approaches, despite the fact that they initially seem rather different. 1.
Obstructions to uniformity, and arithmetic patterns in the primes, preprint
"... Abstract. In this expository article, we describe the recent approach, motivated by ergodic theory, towards detecting arithmetic patterns in the primes, and in particular establishing in [26] that the primes contain arbitrarily long arithmetic progressions. One of the driving philosophies is to iden ..."
Abstract

Cited by 5 (3 self)
 Add to MetaCart
Abstract. In this expository article, we describe the recent approach, motivated by ergodic theory, towards detecting arithmetic patterns in the primes, and in particular establishing in [26] that the primes contain arbitrarily long arithmetic progressions. One of the driving philosophies is to identify precisely what the obstructions could be that prevent the primes (or any other set) from behaving “randomly”, and then either show that the obstructions do not actually occur, or else convert the obstructions into usable structural information on the primes. 1.
Arithmetic progressions and the primes  El Escorial lectures
 Collectanea Mathematica (2006), Vol. Extra., 3788 (Proceedings of the 7th International Conference on Harmonic Analysis and Partial Differential Equations, El Escorial
"... Abstract. We describe some of the machinery behind recent progress in establishing infinitely many arithmetic progressions of length k in various sets of integers, in particular in arbitrary dense subsets of the integers, and in the primes. 1. ..."
Abstract

Cited by 3 (0 self)
 Add to MetaCart
Abstract. We describe some of the machinery behind recent progress in establishing infinitely many arithmetic progressions of length k in various sets of integers, in particular in arbitrary dense subsets of the integers, and in the primes. 1.
Long arithmetic progressions of primes
 Mathematics Proceedings
"... Abstract. This is an article for a general mathematical audience on the author’s work, joint with Terence Tao, establishing that there are arbitrarily long arithmetic progressions of primes. 1. introduction and history This is a description of recent work of the author and Terence Tao [11] on primes ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
Abstract. This is an article for a general mathematical audience on the author’s work, joint with Terence Tao, establishing that there are arbitrarily long arithmetic progressions of primes. 1. introduction and history This is a description of recent work of the author and Terence Tao [11] on primes in arithmetic progression. It is based on seminars given for a general mathematical
On some dynamical systems in finite fields and residue rings
 Discr. and Cont.Dynam.Syst.,Ser.A
"... We use character sums to confirm several recent conjectures of V. I. Arnold on the uniformity of distribution properties of a certain dynamical system in a finite field. On the other hand, we show that some conjectures are wrong. We also analyze several other conjectures of V. I. Arnold related to t ..."
Abstract

Cited by 2 (2 self)
 Add to MetaCart
We use character sums to confirm several recent conjectures of V. I. Arnold on the uniformity of distribution properties of a certain dynamical system in a finite field. On the other hand, we show that some conjectures are wrong. We also analyze several other conjectures of V. I. Arnold related to the orbit length of similar dynamical systems in residue rings and outline possible ways to prove them. We also show that some of them require further tuning. 1