Results 1 
4 of
4
αCONTINUITY PROPERTIES OF THE SYMMETRIC αSTABLE PROCESS
, 2004
"... Abstract. Let D be a domain of finite Lebesgue measure in Rd and let XD t be the symmetric αstable process killed upon exiting D. Each element of the set {λα i}∞i=1 of eigenvalues associated to XD t, regarded as a function of α ∈ (0, 2), is right continuous. In addition, if D is Lipschitz and bound ..."
Abstract

Cited by 4 (0 self)
 Add to MetaCart
Abstract. Let D be a domain of finite Lebesgue measure in Rd and let XD t be the symmetric αstable process killed upon exiting D. Each element of the set {λα i}∞i=1 of eigenvalues associated to XD t, regarded as a function of α ∈ (0, 2), is right continuous. In addition, if D is Lipschitz and bounded, then each λα i is continuous in α and the set of associated eigenfunctions is precompact. We also prove that if D is a domain of finite Lebesgue measure, then for all 0 < α < β ≤ 2 and i ≥ 1, λ α i ≤ λ β] α/β i Previously, this bound had been known only for β = 2 and α rational. 1.
SYMMETRIC STABLE PROCESSES IN PARABOLA–SHAPED REGIONS
, 2004
"... Abstract. We identify the critical exponent of integrability of the first exit time of rotation invariant stable Lévy process from parabola–shaped region. 1. ..."
Abstract
 Add to MetaCart
Abstract. We identify the critical exponent of integrability of the first exit time of rotation invariant stable Lévy process from parabola–shaped region. 1.
SPECTRAL PROPERTIES OF THE CAUCHY PROCESS
, 906
"... This note is an announcement of the results. The full version of this paper, including full proofs, will be available soon. 1. ..."
Abstract
 Add to MetaCart
This note is an announcement of the results. The full version of this paper, including full proofs, will be available soon. 1.
SPECTRAL PROPERTIES OF THE CAUCHY PROCESS ON HALFLINE AND INTERVAL
, 906
"... Abstract. We study the spectral properties of the transition semigroup of the killed onedimensional Cauchy process on the halfline (0, ∞) and the interval (−1, 1). This process is related to the square root of onedimensional Laplacian A = − − d2 dx2 with a Dirichlet exterior condition (on a comp ..."
Abstract
 Add to MetaCart
Abstract. We study the spectral properties of the transition semigroup of the killed onedimensional Cauchy process on the halfline (0, ∞) and the interval (−1, 1). This process is related to the square root of onedimensional Laplacian A = − − d2 dx2 with a Dirichlet exterior condition (on a complement of a domain), and to a mixed Steklov problem in the halfplane. For the halfline, an explicit formula for generalized eigenfunctions ψλ of A is derived, and then used to construct spectral representation of A. Explicit formulas for the transition density of the killed Cauchy process in the halfline (or the heat kernel of A in (0, ∞)), and for the distribution of the first exit time from the halfline follow. The formula for ψλ is also used to construct approximations to eigenfunctions of A in the interval. For the eigenvalues λn of A in the interval the asymptotic formula λn = nπ π 1 − + O ( ) is 2 8 n derived, and all eigenvalues λn are proved to be simple. Finally, efficient numerical methods of estimation of eigenvalues λn are applied to obtain lower and upper numerical bounds for the first few eigenvalues up to 9th decimal point. 1.