Results 1  10
of
11
The minimum description length principle in coding and modeling
 IEEE TRANS. INFORM. THEORY
, 1998
"... We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized ..."
Abstract

Cited by 390 (17 self)
 Add to MetaCart
(Show Context)
We review the principles of Minimum Description Length and Stochastic Complexity as used in data compression and statistical modeling. Stochastic complexity is formulated as the solution to optimum universal coding problems extending Shannon’s basic source coding theorem. The normalized maximized likelihood, mixture, and predictive codings are each shown to achieve the stochastic complexity to within asymptotically vanishing terms. We assess the performance of the minimum description length criterion both from the vantage point of quality of data compression and accuracy of statistical inference. Context tree modeling, density estimation, and model selection in Gaussian linear regression serve as examples.
Minimum Message Length and Kolmogorov Complexity
 Computer Journal
, 1999
"... this paper is to describe some of the relationships among the different streams and to try to clarify some of the important differences in their assumptions and development. Other studies mentioning the relationships appear in [1, Section IV, pp. 10381039], [2, sections 5.2, 5.5] and [3, p. 465] ..."
Abstract

Cited by 125 (29 self)
 Add to MetaCart
(Show Context)
this paper is to describe some of the relationships among the different streams and to try to clarify some of the important differences in their assumptions and development. Other studies mentioning the relationships appear in [1, Section IV, pp. 10381039], [2, sections 5.2, 5.5] and [3, p. 465]
Hypothesis Selection and Testing by the MDL Principle
 The Computer Journal
, 1998
"... ses where the variance is known or taken as a parameter. 1. INTRODUCTION Although the term `hypothesis' in statistics is synonymous with that of a probability `model' as an explanation of data, hypothesis testing is not quite the same problem as model selection. This is because usually ..."
Abstract

Cited by 71 (3 self)
 Add to MetaCart
(Show Context)
ses where the variance is known or taken as a parameter. 1. INTRODUCTION Although the term `hypothesis' in statistics is synonymous with that of a probability `model' as an explanation of data, hypothesis testing is not quite the same problem as model selection. This is because usually a particular hypothesis, called the `null hypothesis', has already been selected as a favorite model and it will be abandoned in favor of another model only when it clearly fails to explain the currently available data. In model selection, by contrast, all the models considered are regarded on the same footing and the objective is simply to pick the one that best explains the data. For the Bayesians certain models may be favored in terms of a prior probability, but in the minimum description length (MDL) approach to be outlined below, prior knowledge of any kind is to be used in selecting the tentative models, which in the end, unlike in the Bayesians' case, can and will be fitted to data
MDL Denoising
 IEEE Transactions on Information Theory
, 1999
"... The socalled denoising problem, relative to normal models for noise, is formalized such that `noise' is defined as the incompressible part in the data while the compressible part defines the meaningful information bearing signal. Such a decomposition is effected by minimization of the ideal ..."
Abstract

Cited by 64 (10 self)
 Add to MetaCart
(Show Context)
The socalled denoising problem, relative to normal models for noise, is formalized such that `noise' is defined as the incompressible part in the data while the compressible part defines the meaningful information bearing signal. Such a decomposition is effected by minimization of the ideal code length, called for by the Minimum Description Length (MDL) principle, and obtained by an application of the normalized maximum likelihood technique to the primary parameters, their range, and their number. For any orthonormal regression matrix, such as defined by wavelet transforms, the minimization can be done with a threshold for the squared coefficients resulting from the expansion of the data sequence in the basis vectors defined by the matrix. keywords: linear regression, wavelet transforms, threshold, stochastic complexity, Kolmogorov sufficient statistics 1 Introduction Intuitively speaking the socalled `denoising' problem is to separate an observed data sequence x 1 ; x 2 ; ...
Efficient Computation of Stochastic Complexity
 Proceedings of the Ninth International Conference on Artificial Intelligence and Statistics
, 2003
"... Stochastic complexity of a data set is defined as the shortest possible code length for the data obtainable by using some fixed set of models. This measure is of great theoretical and practical importance as a tool for tasks such as model selection or data clustering. Unfortunately, computing ..."
Abstract

Cited by 16 (11 self)
 Add to MetaCart
(Show Context)
Stochastic complexity of a data set is defined as the shortest possible code length for the data obtainable by using some fixed set of models. This measure is of great theoretical and practical importance as a tool for tasks such as model selection or data clustering. Unfortunately, computing the modern version of stochastic complexity, defined as the Normalized Maximum Likelihood (NML) criterion, requires computing a sum with an exponential number of terms. Therefore, in order to be able to apply the stochastic complexity measure in practice, in most cases it has to be approximated. In this paper, we show that for some interesting and important cases with multinomial data sets, the exponentiality can be removed without loss of accuracy. We also introduce a new computationally efficient approximation scheme based on analytic combinatorics and assess its accuracy, together with earlier approximations, by comparing them to the exact form.
MDL denoising revisited
 IEEE Transactions on Signal Processing, 57(9):3347 – 3360
, 2009
"... Abstract — We refine and extend an earlier MDL denoising criterion for waveletbased denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and noninformative wavelet coefficients, respecti ..."
Abstract

Cited by 8 (2 self)
 Add to MetaCart
(Show Context)
Abstract — We refine and extend an earlier MDL denoising criterion for waveletbased denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and noninformative wavelet coefficients, respectively. This suggests two refinements, adding a codelength for the model index, and extending the model in order to account for subbanddependent coefficient distributions. A third refinement is derivation of soft thresholding inspired by predictive universal coding with weighted mixtures. We propose a practical method incorporating all three refinements, which is shown to achieve good performance and robustness in denoising both artificial and natural signals. Index Terms — Minimum description length (MDL) principle, wavelets, denoising. I.
COMPUTING MINIMUM DESCRIPTION LENGTH FOR ROBUST LINEAR REGRESSION MODEL SELECTION
"... A minimum description length (MDL) and stochastic complexity approach for model selection in robust linear regression is studied in this paper. Computational aspects and implementation of this approach to practical problems are the focuses of the study. Particularly,we provide both algorithms and a ..."
Abstract

Cited by 1 (0 self)
 Add to MetaCart
(Show Context)
A minimum description length (MDL) and stochastic complexity approach for model selection in robust linear regression is studied in this paper. Computational aspects and implementation of this approach to practical problems are the focuses of the study. Particularly,we provide both algorithms and a package of S language programs for computing the stochastic complexity and proceeding with the associated model selection. A simulation study is then presented for illustration and comparing the MDL approach with the commonly used AIC and BIC methods. Finally, an application is given to a physiological study of triathlon athletes. 1
Abstract A Probabilistic Similarity Framework for ContentBased Image Retrieval
, 2001
"... This is to certify that I have examined this copy of a doctoral dissertation by ..."
Abstract
 Add to MetaCart
(Show Context)
This is to certify that I have examined this copy of a doctoral dissertation by
Advance Access publication on June 18, 2008 doi:10.1093/comjnl/bxm117
"... One of the second generation of computer scientists, Chris Wallace completed his tertiary education in 1959 with a Ph.D. in nuclear physics, on cosmic ray showers, under Dr Paul George at Sydney University. Needless to say, computer science was not, at that stage, an established academic discipline. ..."
Abstract
 Add to MetaCart
One of the second generation of computer scientists, Chris Wallace completed his tertiary education in 1959 with a Ph.D. in nuclear physics, on cosmic ray showers, under Dr Paul George at Sydney University. Needless to say, computer science was not, at that stage, an established academic discipline. With Max Brennan 1 andJohnMaloshehaddesignedand built a large automatic data logging system for recording cosmic ray air shower events and with Max Brennan also developed a complex computer programme for Bayesian analysis of cosmic ray events on the recently installed SILLIAC computer. Appointed lecturer in Physics at Sydney in 1960 he was sent almost immediately to the University of Illinois to copy the design of ILLIAC II, a duplicate of which was to be built at Sydney. ILLIAC II was not in fact completed at that stage and, after an initial less than warm welcome by a department who seemed unsure exactly what this Australian was doing in their midst, his talents were recognized and he was invited to join their staff (under very generous conditions) to assist in ILLIAC II design 2. He remained there for two years helping in particular to design the input output channels and aspects of the advanced control unit (first stage pipeline). In the event, Sydney decided it would be too expensive to build a copy of ILLIAC II, although a successful copy (the Golem) was built in Israel using circuit designs developed by Wallace and Ken Smith. In spite of the considerable financial and academic inducements to remain in America, Wallace returned to Australia after three months spent in England familiarizing himself with the KDF9 computer being purchased by Sydney University to replace SILLIAC. Returning to the School of Physics he joined the Basser
unknown title
, 2006
"... Abstract — We refine and extend an earlier MDL denoising criterion for waveletbased denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and noninformative wavelet coefficients, respecti ..."
Abstract
 Add to MetaCart
(Show Context)
Abstract — We refine and extend an earlier MDL denoising criterion for waveletbased denoising. We start by showing that the denoising problem can be reformulated as a clustering problem, where the goal is to obtain separate clusters for informative and noninformative wavelet coefficients, respectively. This suggests two refinements, adding a codelength for the model index, and extending the model in order to account for subbanddependent coefficient distributions. A third refinement is derivation of soft thresholding inspired by predictive universal coding with weighted mixtures. We propose a practical method incorporating all three refinements, which is shown to achieve good performance and robustness in denoising both artificial and natural signals. Index Terms — Minimum description length (MDL) principle, wavelets, denoising. I.