Results 1  10
of
45
Hyperelliptic Curve Cryptosystems: Closing the Performance Gap to Elliptic Curves
 Workshop on Cryptographic Hardware and Embedded Systems — CHES 2003
, 2003
"... For most of the time since they were proposed, it was widely believed that hyperelliptic curve cryptosystems (HECC) carry a substantial performance penalty compared to elliptic curve cryptosystems (ECC) and are, thus, not too attractive for practical applications. Only quite recently improvements ha ..."
Abstract

Cited by 42 (13 self)
 Add to MetaCart
For most of the time since they were proposed, it was widely believed that hyperelliptic curve cryptosystems (HECC) carry a substantial performance penalty compared to elliptic curve cryptosystems (ECC) and are, thus, not too attractive for practical applications. Only quite recently improvements have been made, mainly restricted to curves of genus 2. The work at hand advances the stateoftheart considerably in several aspects. First, we generalize and improve the closed formulae for the group operation of genus 3 for HEC defined over fields of characteristic two. For certain curves we achieve over 50% complexity improvement compared to the best previously published results. Second, we introduce a new complexity metric for ECC and HECC defined over characteristic two fields which allow performance comparisons of practical relevance. It can be shown that the HECC performance is in the range of the performance of an ECC; for specific parameters HECC can even possess a lower complexity than an ECC at the same security level. Third, we describe the first implementation of a HEC cryptosystem on an embedded (ARM7) processor. Since HEC are particularly attractive for constrained environments, such a case study should be of relevance.
Construction of secure random curves of genus 2 over prime fields
 Advances in Cryptology – EUROCRYPT 2004, volume 3027 of Lecture Notes in Comput. Sci
, 2004
"... Abstract. For counting points of Jacobians of genus 2 curves defined over large prime fields, the best known method is a variant of Schoof’s algorithm. We present several improvements on the algorithms described by Gaudry and Harley in 2000. In particular we rebuild the symmetry that had been broken ..."
Abstract

Cited by 37 (12 self)
 Add to MetaCart
Abstract. For counting points of Jacobians of genus 2 curves defined over large prime fields, the best known method is a variant of Schoof’s algorithm. We present several improvements on the algorithms described by Gaudry and Harley in 2000. In particular we rebuild the symmetry that had been broken by the use of Cantor’s division polynomials and design a faster division by 2 and a division by 3. Combined with the algorithm by Matsuo, Chao and Tsujii, our implementation can count the points on a Jacobian of size 164 bits within about one week on a PC. 1
Aspects of Hyperelliptic Curves over Large Prime Fields in Software Implementations
, 2004
"... Abstract. We present an implementation of elliptic curves and of hyperelliptic curves of genus 2 and 3 over prime fields. To achieve a fair comparison between the different types of groups, we developed an adhoc arithmetic library, designed to remove most of the overheads that penalize implementati ..."
Abstract

Cited by 36 (5 self)
 Add to MetaCart
Abstract. We present an implementation of elliptic curves and of hyperelliptic curves of genus 2 and 3 over prime fields. To achieve a fair comparison between the different types of groups, we developed an adhoc arithmetic library, designed to remove most of the overheads that penalize implementations of curvebased cryptography over prime fields. These overheads get worse for smaller fields, and thus for larger genera for a fixed group size. We also use techniques for delaying modular reductions to reduce the amount of modular reductions in the formulae for the group operations. The result is that the performance of hyperelliptic curves of genus 2 over prime fields is much closer to the performance of elliptic curves than previously thought. For groups of 192 and 256 bits the difference is about 14 % and 15 % respectively.
Constructing hyperelliptic curves of genus 2 suitable for cryptography
 Math. Comp
, 2003
"... Abstract. In this article we show how to generalize the CMmethod for elliptic curves to genus two. We describe the algorithm in detail and discuss the results of our implementation. 1. ..."
Abstract

Cited by 29 (2 self)
 Add to MetaCart
Abstract. In this article we show how to generalize the CMmethod for elliptic curves to genus two. We describe the algorithm in detail and discuss the results of our implementation. 1.
Low Cost Security: Explicit Formulae for Genus 4 Hyperelliptic Curves
, 2003
"... It is widely believed that genus four hyperelliptic curve cryptosystems (HECC) are not attractive for practical applications because of their complexity compared to systems based on lower genera, especially elliptic curves. Our contribution shows that for low cost security applications genus4 hyper ..."
Abstract

Cited by 25 (12 self)
 Add to MetaCart
It is widely believed that genus four hyperelliptic curve cryptosystems (HECC) are not attractive for practical applications because of their complexity compared to systems based on lower genera, especially elliptic curves. Our contribution shows that for low cost security applications genus4 hyperelliptic curves (HEC) can outperform genus2 HEC and that we can achieve a performance similar to genus3 HEC. Furthermore our implementation results show that a genus4 HECC is an alternative cryptosystem to systems based on elliptic curves. In the work at hand...
Linear recurrences with polynomial coefficients and computation of the CartierManin operator on hyperelliptic curves
 In International Conference on Finite Fields and Applications (Toulouse
, 2004
"... Abstract. We study the complexity of computing one or several terms (not necessarily consecutive) in a recurrence with polynomial coefficients. As applications, we improve the best currently known upper bounds for factoring integers deterministically and for computing the Cartier–Manin operator of h ..."
Abstract

Cited by 21 (8 self)
 Add to MetaCart
Abstract. We study the complexity of computing one or several terms (not necessarily consecutive) in a recurrence with polynomial coefficients. As applications, we improve the best currently known upper bounds for factoring integers deterministically and for computing the Cartier–Manin operator of hyperelliptic curves.
Computing Parametric Geometric Resolutions
, 2001
"... Given a polynomial system of n equations in n unknowns that depends on some parameters, we de ne the notion of parametric geometric resolution as a means to represent some generic solutions in terms of the parameters. The coefficients of this resolution are rational functions of the parameters; we f ..."
Abstract

Cited by 20 (7 self)
 Add to MetaCart
Given a polynomial system of n equations in n unknowns that depends on some parameters, we de ne the notion of parametric geometric resolution as a means to represent some generic solutions in terms of the parameters. The coefficients of this resolution are rational functions of the parameters; we first show that their degree is bounded by the Bézout number d n , where d is a bound on the degrees of the input system. We then present a probabilistic algorithm to compute such a resolution; in short, its complexity is polynomial in the size of the output and the probability of success is controlled by a quantity polynomial in the Bézout number. We present several applications of this process, to computations in the Jacobian of hyperelliptic curves and to questions of real geometry.
Fast Computation of Special Resultants
, 2006
"... We propose fast algorithms for computing composed products and composed sums, as well as diamond products of univariate polynomials. These operations correspond to special multivariate resultants, that we compute using power sums of roots of polynomials, by means of their generating series. ..."
Abstract

Cited by 20 (8 self)
 Add to MetaCart
We propose fast algorithms for computing composed products and composed sums, as well as diamond products of univariate polynomials. These operations correspond to special multivariate resultants, that we compute using power sums of roots of polynomials, by means of their generating series.
A CRT algorithm for constructing genus 2 curves over finite fields
, 2007
"... Abstract. — We present a new method for constructing genus 2 curves over a finite field Fn with a given number of points on its Jacobian. This method has important applications in cryptography, where groups of prime order are used as the basis for discretelog based cryptosystems. Our algorithm prov ..."
Abstract

Cited by 19 (7 self)
 Add to MetaCart
Abstract. — We present a new method for constructing genus 2 curves over a finite field Fn with a given number of points on its Jacobian. This method has important applications in cryptography, where groups of prime order are used as the basis for discretelog based cryptosystems. Our algorithm provides an alternative to the traditional CM method for constructing genus 2 curves. For a quartic CM field K with primitive CM type, we compute the Igusa class polynomials modulo p for certain small primes p and then use the Chinese remainder theorem (CRT) and a bound on the denominators to construct the class polynomials. We also provide an algorithm for determining endomorphism rings of ordinary Jacobians of genus 2 curves over finite fields, generalizing the work of Kohel for elliptic curves. Résumé (Un algorithme fondé sur le théorème chinois pour construire des courbes de genre 2 sur des corps finis) Nous présentons une nouvelle méthode pour construire des courbes de genre 2 sur un corps fini Fn avec un nombre donné de points sur sa jacobienne. Cette méthode a des applications importantes en cryptographie, où des groupes d’ordre premier sont employés pour former des cryptosystèmes fondés sur le logarithme discret. Notre algorithme fournit une alternative à la méthode traditionnelle de multiplication complexe pour construire des courbes de genre 2. Pour un corps quartique K à multiplication complexe de type primitif, nous calculons les polynômes de classe d’Igusa modulo p pour certain petit premiers p et employons le théorème chinois et une borne sur les dénominateurs pour construire les polynômes de classe. Nous fournissons également un algorithme pour déterminer les anneaux d’endomorphismes des jacobiennes de courbes ordinaires de genre 2 sur des corps finis, généralisant le travail de Kohel pour les courbes elliptiques.