Results 1  10
of
161
Guide to Elliptic Curve Cryptography
, 2004
"... Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves ..."
Abstract

Cited by 369 (17 self)
 Add to MetaCart
Elliptic curves have been intensively studied in number theory and algebraic geometry for over 100 years and there is an enormous amount of literature on the subject. To quote the mathematician Serge Lang: It is possible to write endlessly on elliptic curves. (This is not a threat.) Elliptic curves also figured prominently in the recent proof of Fermat's Last Theorem by Andrew Wiles. Originally pursued for purely aesthetic reasons, elliptic curves have recently been utilized in devising algorithms for factoring integers, primality proving, and in publickey cryptography. In this article, we aim to give the reader an introduction to elliptic curve cryptosystems, and to demonstrate why these systems provide relatively small block sizes, highspeed software and hardware implementations, and offer the highest strengthperkeybit of any known publickey scheme.
Efficient Elliptic Curve Exponentiation Using Mixed Coordinates
, 1998
"... Elliptic curve cryptosystems, proposed by Koblitz ([11]) and Miller ([15]), can be constructed over a smaller field of definition than the ElGamal cryptosystems ([5]) or the RSA cryptosystems ([19]). This is why elliptic curve cryptosystems have begun to attract notice. In this paper, we investigate ..."
Abstract

Cited by 142 (2 self)
 Add to MetaCart
Elliptic curve cryptosystems, proposed by Koblitz ([11]) and Miller ([15]), can be constructed over a smaller field of definition than the ElGamal cryptosystems ([5]) or the RSA cryptosystems ([19]). This is why elliptic curve cryptosystems have begun to attract notice. In this paper, we investigate efficient elliptic curve exponentiation. We propose a new coordinate system and a new mixed coordinates strategy, which significantly improves on the number of basic operations needed for elliptic curve exponentiation.
Constructive And Destructive Facets Of Weil Descent On Elliptic Curves
 JOURNAL OF CRYPTOLOGY
, 2000
"... In this paper we look in detail at the curves which arise in the method of Galbraith and Smart for producing curves in the Weil restriction of an elliptic curve over a finite field of characteristic two of composite degree. We explain how this method can be used to construct hyperelliptic cryptosys ..."
Abstract

Cited by 139 (12 self)
 Add to MetaCart
In this paper we look in detail at the curves which arise in the method of Galbraith and Smart for producing curves in the Weil restriction of an elliptic curve over a finite field of characteristic two of composite degree. We explain how this method can be used to construct hyperelliptic cryptosystems which could be as secure as a cryptosystems based on the original elliptic curve. On the other hand, we show that this may provide a way of attacking the original elliptic curve cryptosystem using recent advances in the study of the discrete logarithm problem on hyperelliptic curves. We examine the resulting higher genus curves in some detail and propose an additional check on elliptic curve systems defined over fields of characteristic two so as to make them immune from the methods in this paper. 1. Introduction In this paper we address two problems: How to construct hyperelliptic cryptosystems and how to attack elliptic curve cryptosystems defined over fields of even characteristic ...
Efficient Pairing Computation on Supersingular Abelian Varieties
 Designs, Codes and Cryptography
, 2004
"... We present a general technique for the efficient computation of pairings on supersingular Abelian varieties. As particular cases, we describe efficient pairing algorithms for elliptic and hyperelliptic curves in characteristic 2. The latter is faster than all previously known pairing algorithms, and ..."
Abstract

Cited by 130 (23 self)
 Add to MetaCart
We present a general technique for the efficient computation of pairings on supersingular Abelian varieties. As particular cases, we describe efficient pairing algorithms for elliptic and hyperelliptic curves in characteristic 2. The latter is faster than all previously known pairing algorithms, and as a bonus also gives rise to faster conventional Jacobian arithmetic.
The gapproblems: a new class of problems for the security of cryptographic schemes
 Proceedings of PKC 2001, volume 1992 of LNCS
, 1992
"... Abstract. This paper introduces a novel class of computational problems, the gap problems, which can be considered as a dual to the class of the decision problems. We show the relationship among inverting problems, decision problems and gap problems. These problems find a nice and rich practical ins ..."
Abstract

Cited by 122 (11 self)
 Add to MetaCart
Abstract. This paper introduces a novel class of computational problems, the gap problems, which can be considered as a dual to the class of the decision problems. We show the relationship among inverting problems, decision problems and gap problems. These problems find a nice and rich practical instantiation with the DiffieHellman problems. Then, we see how the gap problems find natural applications in cryptography, namely for proving the security of very efficient schemes, but also for solving a more than 10year old open security problem: the Chaum’s undeniable signature.
The Elliptic Curve Digital Signature Algorithm (ECDSA)
, 1999
"... The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under consideratio ..."
Abstract

Cited by 101 (5 self)
 Add to MetaCart
The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analogue of the Digital Signature Algorithm (DSA). It was accepted in 1999 as an ANSI standard, and was accepted in 2000 as IEEE and NIST standards. It was also accepted in 1998 as an ISO standard, and is under consideration for inclusion in some other ISO standards. Unlike the ordinary discrete logarithm problem and the integer factorization problem, no subexponentialtime algorithm is known for the elliptic curve discrete logarithm problem. For this reason, the strengthperkeybit is substantially greater in an algorithm that uses elliptic curves. This paper describes the ANSI X9.62 ECDSA, and discusses related security, implementation, and interoperability issues. Keywords: Signature schemes, elliptic curve cryptography, DSA, ECDSA.
Supersingular curves in cryptography
, 2001
"... Frey and Rück gave a method to map the discrete logarithm problem in the divisor class group of a curve over ¢¡ into a finite field discrete logarithm problem in some extension. The discrete logarithm problem in the divisor class group can therefore be solved as long ¥ as is small. In the elliptic ..."
Abstract

Cited by 87 (8 self)
 Add to MetaCart
Frey and Rück gave a method to map the discrete logarithm problem in the divisor class group of a curve over ¢¡ into a finite field discrete logarithm problem in some extension. The discrete logarithm problem in the divisor class group can therefore be solved as long ¥ as is small. In the elliptic curve case it is known that for supersingular curves one ¥§¦© ¨ has. In this paper curves of higher genus are studied. Bounds on the possible values ¥ for in the case of supersingular curves are given. Ways to ensure that a curve is not supersingular are also given. 1.
An algorithm for solving the discrete log problem on hyperelliptic curves
, 2000
"... Abstract. We present an indexcalculus algorithm for the computation of discrete logarithms in the Jacobian of hyperelliptic curves defined over finite fields. The complexity predicts that it is faster than the Rho method for genus greater than 4. To demonstrate the efficiency of our approach, we de ..."
Abstract

Cited by 78 (6 self)
 Add to MetaCart
Abstract. We present an indexcalculus algorithm for the computation of discrete logarithms in the Jacobian of hyperelliptic curves defined over finite fields. The complexity predicts that it is faster than the Rho method for genus greater than 4. To demonstrate the efficiency of our approach, we describe our breaking of a cryptosystem based on a curve of genus 6 recently proposed by Koblitz. 1
A taxonomy of pairingfriendly elliptic curves
, 2006
"... Elliptic curves with small embedding degree and large primeorder subgroup are key ingredients for implementing pairingbased cryptographic systems. Such “pairingfriendly” curves are rare and thus require specific constructions. In this paper we give a single coherent framework that encompasses all ..."
Abstract

Cited by 78 (10 self)
 Add to MetaCart
Elliptic curves with small embedding degree and large primeorder subgroup are key ingredients for implementing pairingbased cryptographic systems. Such “pairingfriendly” curves are rare and thus require specific constructions. In this paper we give a single coherent framework that encompasses all of the constructions of pairingfriendly elliptic curves currently existing in the literature. We also include new constructions of pairingfriendly curves that improve on the previously known constructions for certain embedding degrees. Finally, for all embedding degrees up to 50, we provide recommendations as to which pairingfriendly curves to choose to best satisfy a variety of performance and security requirements.
Pairingbased Cryptography at High Security Levels
 Proceedings of Cryptography and Coding 2005, volume 3796 of LNCS
, 2005
"... Abstract. In recent years cryptographic protocols based on the Weil and Tate pairings on elliptic curves have attracted much attention. A notable success in this area was the elegant solution by Boneh and Franklin [7] of the problem of efficient identitybased encryption. At the same time, the secur ..."
Abstract

Cited by 77 (2 self)
 Add to MetaCart
Abstract. In recent years cryptographic protocols based on the Weil and Tate pairings on elliptic curves have attracted much attention. A notable success in this area was the elegant solution by Boneh and Franklin [7] of the problem of efficient identitybased encryption. At the same time, the security standards for public key cryptosystems are expected to increase, so that in the future they will be capable of providing security equivalent to 128, 192, or 256bit AES keys. In this paper we examine the implications of heightened security needs for pairingbased cryptosystems. We first describe three different reasons why highsecurity users might have concerns about the longterm viability of these systems. However, in our view none of the risks inherent in pairingbased systems are sufficiently serious to warrant pulling them from the shelves. We next discuss two families of elliptic curves E for use in pairingbased cryptosystems. The first has the property that the pairing takes values in the prime field Fp over which the curve is defined; the second family consists of supersingular curves with embedding degree k = 2. Finally, we examine the efficiency of the Weil pairing as opposed to the Tate pairing and compare a range of choices of embedding degree k, including k = 1 and k = 24. Let E be the elliptic curve 1.