Results 1 
1 of
1
A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of Arrangements and Polyhedra
, 1992
"... We present a new piv otbased algorithm which can be used with minor modification for the enumeration of the facets of the convex hull of a set of points, or for the enumeration of the vertices of an arrangement or of a convex polyhedron, in arbitrary dimension. The algorithm has the following prope ..."
Abstract

Cited by 208 (30 self)
 Add to MetaCart
We present a new piv otbased algorithm which can be used with minor modification for the enumeration of the facets of the convex hull of a set of points, or for the enumeration of the vertices of an arrangement or of a convex polyhedron, in arbitrary dimension. The algorithm has the following properties: (a) Virtually no additional storage is required beyond the input data; (b) The output list produced is free of duplicates; (c) The algorithm is extremely simple, requires no data structures, and handles all degenerate cases; (d) The running time is output sensitive for nondegenerate inputs; (e) The algorithm is easy to efficiently parallelize. For example, the algorithm finds the v vertices of a polyhedron in R d defined by a nondegenerate system of n inequalities (or dually, the v facets of the convex hull of n points in R d,where each facet contains exactly d given points) in time O(ndv) and O(nd) space. The v vertices in a simple arrangement of n hyperplanes in R d can be found in O(n 2 dv) time and O(nd) space complexity. The algorithm is based on inverting finite pivot algorithms for linear programming.