Results 1  10
of
187
Normalized Cuts and Image Segmentation
 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE
, 2000
"... ..."
Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 1996
"... We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and c ..."
Abstract

Cited by 629 (20 self)
 Add to MetaCart
We present a novel statistical and variational approach to image segmentation based on a new algorithm named region competition. This algorithm is derived by minimizing a generalized Bayes/MDL criterion using the variational principle. The algorithm is guaranteed to converge to a local minimum and combines aspects of snakes/balloons and region growing. Indeed the classic snakes/balloons and region growing algorithms can be directly derived from our approach. We provide theoretical analysis of region competition including accuracy of boundary location, criteria for initial conditions, and the relationship to edge detection using filters. It is straightforward to generalize the algorithm to multiband segmentation and we demonstrate it on grey level images, color images and texture images. The novel color model allows us to eliminate intensity gradients and shadows, thereby obtaining segmentation based on the albedos of objects. It also helps detect highlight regions. 1 Division of Appli...
Markov Random Field Models in Computer Vision
, 1994
"... . A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The l ..."
Abstract

Cited by 390 (18 self)
 Add to MetaCart
. A variety of computer vision problems can be optimally posed as Bayesian labeling in which the solution of a problem is defined as the maximum a posteriori (MAP) probability estimate of the true labeling. The posterior probability is usually derived from a prior model and a likelihood model. The latter relates to how data is observed and is problem domain dependent. The former depends on how various prior constraints are expressed. Markov Random Field Models (MRF) theory is a tool to encode contextual constraints into the prior probability. This paper presents a unified approach for MRF modeling in low and high level computer vision. The unification is made possible due to a recent advance in MRF modeling for high level object recognition. Such unification provides a systematic approach for vision modeling based on sound mathematical principles. 1 Introduction Since its beginning in early 1960's, computer vision research has been evolving from heuristic design of algorithms to syste...
A Graduated Assignment Algorithm for Graph Matching
, 1996
"... A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational comp ..."
Abstract

Cited by 287 (15 self)
 Add to MetaCart
A graduated assignment algorithm for graph matching is presented which is fast and accurate even in the presence of high noise. By combining graduated nonconvexity, twoway (assignment) constraints, and sparsity, large improvements in accuracy and speed are achieved. Its low order computational complexity [O(lm), where l and m are the number of links in the two graphs] and robustness in the presence of noise offer advantages over traditional combinatorial approaches. The algorithm, not restricted to any special class of graph, is applied to subgraph isomorphism, weighted graph matching, and attributed relational graph matching. To illustrate the performance of the algorithm, attributed relational graphs derived from objects are matched. Then, results from twentyfive thousand experiments conducted on 100 node random graphs of varying types (graphs with only zeroone links, weighted graphs, and graphs with node attributes and multiple link types) are reported. No comparable results have...
Robust Anisotropic Diffusion
, 1998
"... Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the anisotropic d ..."
Abstract

Cited by 281 (16 self)
 Add to MetaCart
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The "edgestopping" function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new "edgestopping" function based on Tukey's biweight robust estimator, that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in an image that has been smoothed with anisotropic diffusion. Additionally, we derive a relationship between anisotropic diffusion and regularization with line processes. Adding constraints on the spatial organization of the ...
Image Segmentation by Data Driven Markov Chain Monte Carlo
, 2001
"... 1 This paper presents a computational paradigm called Data Driven Markov Chain Monte Carlo (DDMCMC) for image segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in three aspects. Firstly, it designs eective and well balanced Markov Chain dynamics to expl ..."
Abstract

Cited by 224 (32 self)
 Add to MetaCart
1 This paper presents a computational paradigm called Data Driven Markov Chain Monte Carlo (DDMCMC) for image segmentation in the Bayesian statistical framework. The paper contributes to image segmentation in three aspects. Firstly, it designs eective and well balanced Markov Chain dynamics to explore the solution space and makes the split and merge process reversible at a middle level vision formulation. Thus it achieves globally optimal solution independent of initial segmentations. Secondly, instead of computing a single maximum a posteriori solution, it proposes a mathematical principle for computing multiple distinct solutions to incorporates intrinsic ambiguities in image segmentation. A kadventurers algorithm is proposed for extracting distinct multiple solutions from the Markov chain sequence. Thirdly, it utilizes datadriven (bottomup) techniques, such as clustering and edge detection, to compute importance proposal probabilities, which eectively drive the Markov chain dynamics and achieve tremendous speedup in comparison to traditional jumpdiusion method[4]. Thus DDMCMC paradigm provides a unifying framework where the role of existing segmentation algorithms, such as, edge detection, clustering, region growing, splitmerge, SNAKEs, region competition, are revealed as either realizing Markov chain dynamics or computing importance proposal probabilities. We report some results on color and grey level image segmentation in this paper and refer to a detailed report and a web site for extensive discussion. 1 Motivation and
Parameter Estimation Techniques: A Tutorial with Application to Conic Fitting
 Image and Vision Computing
, 1997
"... : Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear leastsquares (pseudoinverse and eigen ..."
Abstract

Cited by 198 (6 self)
 Add to MetaCart
: Almost all problems in computer vision are related in one form or another to the problem of estimating parameters from noisy data. In this tutorial, we present what is probably the most commonly used techniques for parameter estimation. These include linear leastsquares (pseudoinverse and eigen analysis); orthogonal leastsquares; gradientweighted leastsquares; biascorrected renormalization; Kalman øltering; and robust techniques (clustering, regression diagnostics, Mestimators, least median of squares). Particular attention has been devoted to discussions about the choice of appropriate minimization criteria and the robustness of the dioeerent techniques. Their application to conic øtting is described. Keywords: Parameter estimation, Leastsquares, Bias correction, Kalman øltering, Robust regression (R#sum# : tsvp) Unite de recherche INRIA SophiaAntipolis 2004 route des Lucioles, BP 93, 06902 SOPHIAANTIPOLIS Cedex (France) Telephone : (33) 93 65 77 77  Telecopie : (33) 9...
Layered Representation of Motion Video using Robust MaximumLikelihood Estimation of Mixture Models and MDL Encoding
, 1995
"... Representing and modeling the motion and spatial support of multiple objects and surfaces from motion video sequences is an important intermediate step towards dynamic image understanding. One such representation, called layered representation, has recently been proposed. Although a number of algori ..."
Abstract

Cited by 196 (4 self)
 Add to MetaCart
Representing and modeling the motion and spatial support of multiple objects and surfaces from motion video sequences is an important intermediate step towards dynamic image understanding. One such representation, called layered representation, has recently been proposed. Although a number of algorithms have been developed for computing these representations, there has not been a consolidated effort into developing a precise mathematical formulation of the problem. This paper presents such a formulation based on maximum likelihood estimation of mixture models and the minimum description length (MDL) encoding principle. The three major issues in layered motion representation are: (i) how many motion models adequately describe image motion, (ii) what are the motion model parameters, and (iii) what is the spatial support layer for each motion model. In order to allow multiple models in the description of image motion, the likelihood function for change in intensity of a pixel is modeled a...
On the Unification Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision
, 1996
"... The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest i ..."
Abstract

Cited by 188 (8 self)
 Add to MetaCart
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While "lineprocess" models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a "line process" to that of an analog "outlier process" and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlierprocess formulation exists and give a straightforward method for converting a robust estimation problem into an outlierprocess formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlierprocess formulation. These results indicate that the outlierprocess approach provides a general framework which subsumes the traditional lineprocess approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlierprocess formulations.
Saliency, Scale and Image Description
, 2001
"... Many computer vision problems can be considered to consist of two main tasks: the extraction of image content descriptions and their subsequent matching. The appropriate choice of type and level of description is of course task dependent, yet it is generally accepted that the lowlevel or so called ..."
Abstract

Cited by 158 (0 self)
 Add to MetaCart
Many computer vision problems can be considered to consist of two main tasks: the extraction of image content descriptions and their subsequent matching. The appropriate choice of type and level of description is of course task dependent, yet it is generally accepted that the lowlevel or so called early vision layers in the Human Visual System are context independent. This paper concentrates on the use of lowlevel approaches for solving computer vision problems and discusses three interrelated aspects of this: saliency; scale selection and content description. In contrast to many previous approaches which separate these tasks, we argue that these three aspects are intrinsically related. Based on this observation, a multiscale algorithm for the selection of salient regions of an image is introduced and its application to matching type problems such as tracking, object recognition and image retrieval is demonstrated.