Results 1  10
of
79
Self Organization in Vision: Stochastic Clustering for Image Segmentation, Perceptual Grouping, and Image Database Organization
, 2001
"... We present a stochastic clustering algorithm which uses pairwise similarity of elements, and show how it can be used to address various problems in computer vision, including the lowlevel image segmentation, midlevel perceptual grouping, and highlevel image database organization. The clustering p ..."
Abstract

Cited by 76 (4 self)
 Add to MetaCart
We present a stochastic clustering algorithm which uses pairwise similarity of elements, and show how it can be used to address various problems in computer vision, including the lowlevel image segmentation, midlevel perceptual grouping, and highlevel image database organization. The clustering problem is viewed as a graph partitioning problem, where nodes represent data elements and the weights of the edges represent pairwise similarities. We generate samples of cuts in this graph, by using Karger's contraction algorithm, and compute an "average" cut which provides the basis for our solution to the clustering problem. The stochastic nature of our method makes it robust against noise, including accidental edges and small spurious clusters. The complexity of our algorithm is very low: O(E log² N) for N objects, E similarity relations and a fixed accuracy level. In addition, and without additional computational cost, our algorithm provides a hierarchy of nested partitions. We demonstrate the superiority of our method for image segmentation on a few synthetic and real images, B&W and color. Our other examples include the concatenation of edges in a cluttered scene (perceptual grouping), and the organization of an image database for the purpose of multiview 3D object recognition.
Minimum Cuts in NearLinear Time
, 1999
"... We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a "semiduality" between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized (Monte Carlo) algorithm that fi ..."
Abstract

Cited by 70 (10 self)
 Add to MetaCart
We significantly improve known time bounds for solving the minimum cut problem on undirected graphs. We use a "semiduality" between minimum cuts and maximum spanning tree packings combined with our previously developed random sampling techniques. We give a randomized (Monte Carlo) algorithm that finds a minimum cut in an medge, nvertex graph with high probability in O(m log³ n) time. We also give a simpler randomized algorithm that finds all minimum cuts with high probability in O(n² log n) time. This variant has an optimal RNC parallelization. Both variants improve on the previous best time bound of O(n² log³ n). Other applications of the treepacking approach are new, nearly tight bounds on the number of near minimum cuts a graph may have and a new data structure for representing them in a spaceefficient manner.
RANDOM SAMPLING IN CUT, FLOW, AND NETWORK DESIGN PROBLEMS
, 1999
"... We use random sampling as a tool for solving undirected graph problems. We show that the sparse graph, or skeleton, that arises when we randomly sample a graph’s edges will accurately approximate the value of all cuts in the original graph with high probability. This makes sampling effective for pro ..."
Abstract

Cited by 70 (11 self)
 Add to MetaCart
We use random sampling as a tool for solving undirected graph problems. We show that the sparse graph, or skeleton, that arises when we randomly sample a graph’s edges will accurately approximate the value of all cuts in the original graph with high probability. This makes sampling effective for problems involving cuts in graphs. We present fast randomized (Monte Carlo and Las Vegas) algorithms for approximating and exactly finding minimum cuts and maximum flows in unweighted, undirected graphs. Our cutapproximation algorithms extend unchanged to weighted graphs while our weightedgraph flow algorithms are somewhat slower. Our approach gives a general paradigm with potential applications to any packing problem. It has since been used in a nearlinear time algorithm for finding minimum cuts, as well as faster cut and flow algorithms. Our sampling theorems also yield faster algorithms for several other cutbased problems, including approximating the best balanced cut of a graph, finding a kconnected orientation of a 2kconnected graph, and finding integral multicommodity flows in graphs with a great deal of excess capacity. Our methods also improve the efficiency of some parallel cut and flow algorithms. Our methods also apply to the network design problem, where we wish to build a network satisfying certain connectivity requirements between vertices. We can purchase edges of various costs and wish to satisfy the requirements at minimum total cost. Since our sampling theorems apply even when the sampling probabilities are different for different edges, we can apply randomized rounding to solve network design problems. This gives approximation algorithms that guarantee much better approximations than previous algorithms whenever the minimum connectivity requirement is large. As a particular example, we improve the best approximation bound for the minimum kconnected subgraph problem from 1.85 to 1 � O(�log n)/k).
An improved approximation algorithm for multiway cut
 Journal of Computer and System Sciences
, 1998
"... Given an undirected graph with edge costs and a subset of k nodes called terminals, a multiway cut is a subset of edges whose removal disconnects each terminal from the rest. Multiway Cut is the problem of finding a multiway cut of minimum cost. Previously, a very simple combinatorial algorithm due ..."
Abstract

Cited by 58 (5 self)
 Add to MetaCart
Given an undirected graph with edge costs and a subset of k nodes called terminals, a multiway cut is a subset of edges whose removal disconnects each terminal from the rest. Multiway Cut is the problem of finding a multiway cut of minimum cost. Previously, a very simple combinatorial algorithm due to Dahlhaus, � Johnson, Papadimitriou, Seymour, and Yannakakis gave a performance guarantee of 2 1 − 1 k. In this paper, we present a new linear programming relaxation for Multiway Cut and a new approximation algorithm based on it. The algorithm breaks the threshold of 2 for approximating Multiway Cut, achieving a. This improves the previous result for every value of k. performance ratio of at most 1.5 − 1 k In particular, for k = 3 we get a ratio of 7
A New GraphTheoretic Approach to Clustering, with Applications to Computer Vision
, 2004
"... This work applies cluster analysis as a unified approach for a wide range of vision applications, thereby combining the research domain of computer vision and that of machine learning. Cluster analysis is the formal study of algorithms and methods for recovering the inherent structure within a given ..."
Abstract

Cited by 44 (4 self)
 Add to MetaCart
This work applies cluster analysis as a unified approach for a wide range of vision applications, thereby combining the research domain of computer vision and that of machine learning. Cluster analysis is the formal study of algorithms and methods for recovering the inherent structure within a given dataset. Many problems of computer vision have precisely this goal, namely to find which visual entities belong to an inherent structure, e.g. in an image or in a database of images. For example, a meaningful structure in the context of image segmentation is a set of pixels which correspond to the same object in a scene. Clustering algorithms can be used to partition the pixels of an image into meaningful parts, which may correspond to different objects. In this work we focus on the problems of image segmentation and image database organization. The visual entities to consider are pixels and images, respectively. Our first contribution in this work is a novel partitional (flat) clustering algorithm. The algorithm uses pairwise representation, where the visual objects (pixels,
Two can keep a secret: A distributed architecture for secure database services
 In Proc. CIDR
, 2005
"... Recent trends towards database outsourcing, as well as concerns and laws governing data privacy, have led to great interest in enabling secure database services. Previous approaches to enabling such a service have been based on data encryption, causing a large overhead in query processing. We propos ..."
Abstract

Cited by 40 (3 self)
 Add to MetaCart
Recent trends towards database outsourcing, as well as concerns and laws governing data privacy, have led to great interest in enabling secure database services. Previous approaches to enabling such a service have been based on data encryption, causing a large overhead in query processing. We propose a new, distributed architecture that allows an organization to outsource its data management to two untrusted servers while preserving data privacy. We show how the presence of two servers enables efficient partitioning of data so that the contents at any one server are guaranteed not to breach data privacy. We show how to optimize and execute queries in this architecture, and discuss new challenges that emerge in designing the database schema. 1
Implementing the DantzigFulkersonJohnson Algorithm for Large Traveling Salesman Problems
, 2003
"... Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig et ..."
Abstract

Cited by 36 (6 self)
 Add to MetaCart
Dantzig, Fulkerson, and Johnson (1954) introduced the cuttingplane method as a means of attacking the traveling salesman problem; this method has been applied to broad classes of problems in combinatorial optimization and integer programming. In this paper we discuss an implementation of Dantzig et al.'s method that is suitable for TSP instances having 1,000,000 or more cities. Our aim is to use the study of the TSP as a step towards understanding the applicability and limits of the general cuttingplane method in largescale applications.
Randomized Cuts for 3D Mesh Analysis
"... The goal of this paper is to investigate a new shape analysis method based on randomized cuts of 3D surface meshes. The general strategy is to generate a random set of mesh segmentations and then to measure how often each edge of the mesh lies on a segmentation boundary in the randomized set. The re ..."
Abstract

Cited by 34 (2 self)
 Add to MetaCart
The goal of this paper is to investigate a new shape analysis method based on randomized cuts of 3D surface meshes. The general strategy is to generate a random set of mesh segmentations and then to measure how often each edge of the mesh lies on a segmentation boundary in the randomized set. The resulting “partition function” defined on edges provides a continuous measure of where natural part boundaries occur in a mesh, and the set of “most consistent cuts ” provides a stable list of global shape features. The paper describes methods for generating random distributions of mesh segmentations, studies sensitivity of the resulting partition functions to noise, tessellation, pose, and intraclass shape variations, and investigates applications in mesh visualization, segmentation, deformation, and registration.
Binary Partitioning, Perceptual Grouping, and Restoration with Semidefinite Programming
 IEEE Transactions on Pattern Analysis and Machine Intelligence
, 2003
"... We introduce a novel optimization method based on semidefinite programming relaxations to the field of computer vision and apply it to the combinatorial problem of minimizing quadratic functionals in binary decision variables subject to linear constraints. ..."
Abstract

Cited by 30 (6 self)
 Add to MetaCart
We introduce a novel optimization method based on semidefinite programming relaxations to the field of computer vision and apply it to the combinatorial problem of minimizing quadratic functionals in binary decision variables subject to linear constraints.
Prediction on a graph with the perceptron
 in Neural Information Processing Systems
, 2006
"... We study the problem of online prediction of a noisy labeling of a graph with the perceptron. We address both label noise and concept noise. Graph learning is framed as an instance of prediction on a finite set. To treat label noise we show that the hinge loss bounds derived by Gentile [1] for onlin ..."
Abstract

Cited by 26 (6 self)
 Add to MetaCart
We study the problem of online prediction of a noisy labeling of a graph with the perceptron. We address both label noise and concept noise. Graph learning is framed as an instance of prediction on a finite set. To treat label noise we show that the hinge loss bounds derived by Gentile [1] for online perceptron learning can be transformed to relative mistake bounds with an optimal leading constant when applied to prediction on a finite set. These bounds depend crucially on the norm of the learned concept. Often the norm of a concept can vary dramatically with only small perturbations in a labeling. We analyze a simple transformation that stabilizes the norm under perturbations. We derive an upper bound that depends only on natural properties of the graph – the graph diameter and the cut size of a partitioning of the graph – which are only indirectly dependent on the size of the graph. The impossibility of such bounds for the graph geodesic nearest neighbors algorithm will be demonstrated. 1