Results 1  10
of
22
Learning Bayesian Networks With Local Structure
, 1996
"... . We examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability distributions (CPDs) that quantify these networks. This inc ..."
Abstract

Cited by 238 (13 self)
 Add to MetaCart
. We examine a novel addition to the known methods for learning Bayesian networks from data that improves the quality of the learned networks. Our approach explicitly represents and learns the local structure in the conditional probability distributions (CPDs) that quantify these networks. This increases the space of possible models, enabling the representation of CPDs with a variable number of parameters. The resulting learning procedure induces models that better emulate the interactions present in the data. We describe the theoretical foundations and practical aspects of learning local structures and provide an empirical evaluation of the proposed learning procedure. This evaluation indicates that learning curves characterizing this procedure converge faster, in the number of training instances, than those of the standard procedure, which ignores the local structure of the CPDs. Our results also show that networks learned with local structures tend to be more complex (in terms of a...
The Bayesian Structural EM Algorithm
, 1998
"... In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a belief network from incomplete datathat is, in the presence of missing values or hidden variables. In a recent paper, I in ..."
Abstract

Cited by 220 (12 self)
 Add to MetaCart
In recent years there has been a flurry of works on learning Bayesian networks from data. One of the hard problems in this area is how to effectively learn the structure of a belief network from incomplete datathat is, in the presence of missing values or hidden variables. In a recent paper, I introduced an algorithm called Structural EM that combines the standard Expectation Maximization (EM) algorithm, which optimizes parameters, with structure search for model selection. That algorithm learns networks based on penalized likelihood scores, which include the BIC/MDL score and various approximations to the Bayesian score. In this paper, I extend Structural EM to deal directly with Bayesian model selection. I prove the convergence of the resulting algorithm and show how to apply it for learning a large class of probabilistic models, including Bayesian networks and some variants thereof.
Learning Bayesian network structure from massive datasets: The “sparse candidate” algorithm
, 1999
"... Learning Bayesian networks is often cast as an optimization problem, where the computational task is to find a structure that maximizes a statistically motivated score. By and large, existing learning tools address this optimization problem using standard heuristic search techniques. Since the searc ..."
Abstract

Cited by 181 (10 self)
 Add to MetaCart
Learning Bayesian networks is often cast as an optimization problem, where the computational task is to find a structure that maximizes a statistically motivated score. By and large, existing learning tools address this optimization problem using standard heuristic search techniques. Since the search space is extremely large, such search procedures can spend most of the time examining candidates that are extremely unreasonable. This problem becomes critical when we deal with data sets that are large either in the number of instances, or the number of attributes. In this paper, we introduce an algorithm that achieves faster learning by restricting the search space. This iterative algorithm restricts the parents of each variable to belong to a small subset of candidates. We then search for a network that satisfies these constraints. The learned network is then used for selecting better candidates for the next iteration. We evaluate this algorithm both on synthetic and reallife data. Our results show that it is significantly faster than alternative search procedures without loss of quality in the learned structures. 1
Exact Bayesian structure discovery in Bayesian networks
 J. of Machine Learning Research
, 2004
"... We consider a Bayesian method for learning the Bayesian network structure from complete data. Recently, Koivisto and Sood (2004) presented an algorithm that for any single edge computes its marginal posterior probability in O(n2 n) time, where n is the number of attributes; the number of parents per ..."
Abstract

Cited by 55 (8 self)
 Add to MetaCart
We consider a Bayesian method for learning the Bayesian network structure from complete data. Recently, Koivisto and Sood (2004) presented an algorithm that for any single edge computes its marginal posterior probability in O(n2 n) time, where n is the number of attributes; the number of parents per attribute is bounded by a constant. In this paper we show that the posterior probabilities for all the n(n−1) potential edges can be computed in O(n2 n) total time. This result is achieved by a forward–backward technique and fast Möbius transform algorithms, which are of independent interest. The resulting speedup by a factor of about n 2 allows us to experimentally study the statistical power of learning moderatesize networks. We report results from a simulation study that covers data sets with 20 to 10,000 records over 5 to 25 discrete attributes. 1
Data Analysis with Bayesian Networks: A Bootstrap Approach
, 1999
"... In recent years there has been significant progress in algorithms and methods for inducing Bayesian networks from data. However, in complex data analysis problems, we need to go beyond being satisfied with inducing networks with high scores. We need to provide confidence measures on features o ..."
Abstract

Cited by 48 (7 self)
 Add to MetaCart
In recent years there has been significant progress in algorithms and methods for inducing Bayesian networks from data. However, in complex data analysis problems, we need to go beyond being satisfied with inducing networks with high scores. We need to provide confidence measures on features of these networks: Is the existence of an edge between two nodes warranted? Is the Markov blanket of a given node robust? Can we say something about the ordering of the variables? We should be able to address these questions, even when the amount of data is not enough to induce a high scoring network. In this paper we propose Efron's Bootstrap as a computationally efficient approach for answering these questions. In addition, we propose to use these confidence measures to induce better structures from the data, and to detect the presence of latent variables.
Sequential Update of Bayesian Network Structure
 In Proc. 13th Conference on Uncertainty in Artificial Intelligence (UAI’97
, 1997
"... There is an obvious need for improving the performance and accuracy of a Bayesian network as new data is observed. Because of errors in model construction and changes in the dynamics of the domains, we cannot afford to ignore the information in new data. While sequential update of parameters for a f ..."
Abstract

Cited by 47 (4 self)
 Add to MetaCart
There is an obvious need for improving the performance and accuracy of a Bayesian network as new data is observed. Because of errors in model construction and changes in the dynamics of the domains, we cannot afford to ignore the information in new data. While sequential update of parameters for a fixed structure can be accomplished using standard techniques, sequential update of network structure is still an open problem. In this paper, we investigate sequential update of Bayesian networks were both parameters and structure are expected to change. We introduce a new approach that allows for the flexible manipulation of the tradeoff between the quality of the learned networks and the amount of information that is maintained about past observations. We formally describe our approach including the necessary modifications to the scoring functions for learning Bayesian networks, evaluate its effectiveness through and empirical study, and extend it to the case of missing data. 1 Introductio...
Discovering Hidden Variables: A StructureBased Approach
 IN NIPS
, 2001
"... A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. As such, they induce seemingly complex dependencies among the latter. In recent years, much attention has been devoted t ..."
Abstract

Cited by 40 (5 self)
 Add to MetaCart
A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. As such, they induce seemingly complex dependencies among the latter. In recent years, much attention has been devoted to the development of algorithms for learning parameters, and in some cases structure, in the presence of hidden variables. In this paper, we address the related problem of detecting hidden variables that interact with the observed variables. This problem is of interest both for improving our understanding of the domain and as a preliminary step that guides the learning procedure towards promising models. A very natural approach is to search for "structural signatures" of hidden variables  substructures in the learned network that tend to suggest the presence of a hidden variable. We make this basic idea concrete, and show how to integrate it with structuresearch algorithms. We evaluate this method on several synthetic and reallife datasets, and show that it performs surprisingly well.
Improved learning of Bayesian networks
 Proc. of the Conf. on Uncertainty in Artificial Intelligence
, 2001
"... Two or more Bayesian network structures are Markov equivalent when the corresponding acyclic digraphs encode the same set of conditional independencies. Therefore, the search space of Bayesian network structures may be organized in equivalence classes, where each of them represents a different set o ..."
Abstract

Cited by 37 (6 self)
 Add to MetaCart
Two or more Bayesian network structures are Markov equivalent when the corresponding acyclic digraphs encode the same set of conditional independencies. Therefore, the search space of Bayesian network structures may be organized in equivalence classes, where each of them represents a different set of conditional independencies. The collection of sets of conditional independencies obeys a partial order, the socalled “inclusion order.” This paper discusses in depth the role that the inclusion order plays in learning the structure of Bayesian networks. In particular, this role involves the way a learning algorithm traverses the search space. We introduce a condition for traversal operators, the inclusion boundary condition, which, when it is satisfied, guarantees that the search strategy can avoid local maxima. This is proved under the assumptions that the data is sampled from a probability distribution which is faithful to an acyclic digraph, and the length of the sample is unbounded. The previous discussion leads to the design of a new traversal operator and two new learning algorithms in the context of heuristic search and the Markov Chain Monte Carlo method. We carry out a set of experiments with synthetic and realworld data that show empirically the benefit of striving for the inclusion order when learning Bayesian networks from data.
Data Perturbation for Escaping Local Maxima in Learning
 IN AAAI
, 2002
"... Almost all machine learning algorithmsbe they for regression, classification or density estimationseek hypotheses that optimize a score on training data. In most interesting cases, however, full global optimization is not feasible and local search techniques are used to discover reasonable ..."
Abstract

Cited by 36 (3 self)
 Add to MetaCart
Almost all machine learning algorithmsbe they for regression, classification or density estimationseek hypotheses that optimize a score on training data. In most interesting cases, however, full global optimization is not feasible and local search techniques are used to discover reasonable solutions. Unfortunately,
Learning the dimensionality of hidden variables
 In UAI ’01
, 2001
"... A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. Detecting hidden variables poses two problems: determining the relations to other variables in the model and determining the ..."
Abstract

Cited by 24 (3 self)
 Add to MetaCart
A serious problem in learning probabilistic models is the presence of hidden variables. These variables are not observed, yet interact with several of the observed variables. Detecting hidden variables poses two problems: determining the relations to other variables in the model and determining the number of states of the hidden variable. In this paper, we address the latter problem in the context of Bayesian networks. We describe an approach that utilizes a scorebased agglomerative stateclustering. As we show, this approach allows us to efficiently evaluate models with a range of cardinalities for the hidden variable. We show how to extend this procedure to deal with multiple interacting hidden variables. We demonstrate the effectiveness of this approach by evaluating it on synthetic and reallife data. We show that our approach learns models with hidden variables that generalize better and have better structure than previous approaches. 1