Results 1  10
of
74
New HighResolution Central Schemes for Nonlinear Conservation Laws and ConvectionDiffusion Equations
 J. Comput. Phys
, 2000
"... this paper we introduce a new family of central schemes which retain the simplicity of being independent of the eigenstructure of the problem, yet which enjoy a much smaller numerical viscosity (of the corresponding order )).In particular, our new central schemes maintain their highresolution ..."
Abstract

Cited by 100 (14 self)
 Add to MetaCart
this paper we introduce a new family of central schemes which retain the simplicity of being independent of the eigenstructure of the problem, yet which enjoy a much smaller numerical viscosity (of the corresponding order )).In particular, our new central schemes maintain their highresolution independent of O(1/#t ), and letting #t 0, they admit a particularly simple semidiscrete formulation
Third Order Nonoscillatory Central Scheme For Hyperbolic Conservation Laws
"... . A thirdorder accurate Godunovtype scheme for the approximate solution of hyperbolic systems of conservation laws is presented. Its two main ingredients include: #1. A nonoscillatory piecewisequadratic reconstruction of pointvalues from their given cell averages; and #2. A central differencing ..."
Abstract

Cited by 47 (15 self)
 Add to MetaCart
. A thirdorder accurate Godunovtype scheme for the approximate solution of hyperbolic systems of conservation laws is presented. Its two main ingredients include: #1. A nonoscillatory piecewisequadratic reconstruction of pointvalues from their given cell averages; and #2. A central differencing based on staggered evolution of the reconstructed cell averages. This results in a thirdorder central scheme, an extension along the lines of the secondorder central scheme of Nessyahu and Tadmor [NT]. The scalar scheme is nonoscillatory (and hence  convergent), in the sense that it does not increase the number of initial extrema (as does the exact entropy solution operator). Extension to systems is carried out by componentwise application of the scalar framework. In particular, we have the advantage that, unlike upwind schemes, no (approximate) Riemann solvers, fieldbyfield characteristic decompositions, etc., are required. Numerical experiments confirm the highresolution content of...
SemiDiscrete CentralUpwind Schemes for Hyperbolic Conservation Laws and HamiltonJacobi Equations
 SIAM J. Sci. Comput
, 2000
"... We introduce new Godunovtype semidiscrete central schemes for hyperbolic systems of conservation laws and HamiltonJacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation, and can be viewed as a generalization of the schemes from [26, 24 ..."
Abstract

Cited by 45 (3 self)
 Add to MetaCart
We introduce new Godunovtype semidiscrete central schemes for hyperbolic systems of conservation laws and HamiltonJacobi equations. The schemes are based on the use of more precise information about the local speeds of propagation, and can be viewed as a generalization of the schemes from [26, 24, 25] and [27]. The main advantages of the proposed central schemes are the high resolution, due to the smaller amount of the numerical dissipation, and the simplicity. There are no Riemann solvers and characteristic decomposition involved, and this makes them a universal tool for a wide variety of applications. At the same time, the developed schemes have an upwind nature, since they respect the directions of wave propagation by measuring the onesided local speeds. This is the reason why we call them centralupwind schemes. The constructed schemes are applied to various problems, such as the Euler equations of gas dynamics, the HamiltonJacobi equations with convex and nonconvex Hamiltoni...
Approximate Solutions of Nonlinear Conservation Laws and Related Equations
, 1997
"... During the recent decades there was an enormous amount of activity related to the construction and analysis of modern algorithms for the approximate solution of nonlinear hyperbolic conservation laws and related problems. To present some aspects of this successful activity, we discuss the analytical ..."
Abstract

Cited by 34 (11 self)
 Add to MetaCart
During the recent decades there was an enormous amount of activity related to the construction and analysis of modern algorithms for the approximate solution of nonlinear hyperbolic conservation laws and related problems. To present some aspects of this successful activity, we discuss the analytical tools which are used in the development of convergence theories for these algorithms. These include classical compactness arguments (based on BV a priori estimates), the use of compensated compactness arguments (based on H^1compact entropy production), measure valued solutions (measured by their negative entropy production), and finally, we highlight the most recent addition to this bag of analytical tools  the use of averaging lemmas which yield new compactness and regularity results for nonlinear conservation laws and related equations. We demonstrate how these analytical tools are used in the convergence analysis of approximate solutions for hyperbolic conservation laws and related equations. Our discussion includes examples of Total Variation Diminishing (TVD) finitedifference schemes; error estimates derived from the onesided stability of Godunovtype methods for convex conservation laws (and their multidimensional analogue  viscosity solutions of demiconcave HamiltonJacobi equations); we outline, in the onedimensional case, the convergence proof of finiteelement streamlinediffusion and spectral viscosity schemes based on the divcurl lemma; we also address the questions of convergence and error estimates for multidimensional finitevolume schemes on nonrectangular grids; and finally, we indicate the convergence of approximate solutions with underlying kinetic formulation, e.g., finitevolume and relaxation schemes, once their regularizing effect is quantified in terms of the averaging lemma.
Multiphase Computations in Geometrical Optics
 J. Comp. Appl. Math
, 1996
"... In this work we propose a new set of partial differential equations (PDEs) which can be seen as a generalization of the classical eikonal and transport equations, to allow for solutions with multiple phases. The traditional geometrical optics pair of equations suffer from the fact that the class of ..."
Abstract

Cited by 32 (1 self)
 Add to MetaCart
In this work we propose a new set of partial differential equations (PDEs) which can be seen as a generalization of the classical eikonal and transport equations, to allow for solutions with multiple phases. The traditional geometrical optics pair of equations suffer from the fact that the class of physically relevant solutions is limited. In particular, it does not include solutions with multiple phases, corresponding to crossing waves. Our objective has been to generalize these equations to accommodate solutions containing more than one phase. The new equations are based on the same high frequency approximation of the scalar wave equation as the eikonal and the transport equations. However, they also incorporate a finite superposition principle. The maximum allowed number of intersecting waves in the solution can be chosen arbitrarily, but a higher number means that a larger system of PDEs must be solved. The PDEs form a hyperbolic system of conservation laws with source terms. Altho...
Central WENO Schemes for Hyperbolic Systems of Conservation Laws
 MATH. MODEL. NUMER. ANAL
, 2001
"... We present a family of highorder, essentially nonoscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially NonOscillatory (WENO) reconstruction of pointvalues from cellaverages ..."
Abstract

Cited by 31 (12 self)
 Add to MetaCart
We present a family of highorder, essentially nonoscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially NonOscillatory (WENO) reconstruction of pointvalues from cellaverages, which is then followed by an accurate approximation of the fluxes via a natural continuous extension of RungeKutta solvers. We explicitly construct the third and fourthorder scheme and demonstrate their highresolution properties in several numerical tests.
HighResolution Nonoscillatory Central Schemes With Nonstaggered Grids For Hyperbolic Conservation Laws
 SIAM J. Numer. Anal
, 1998
"... We present a general procedure to convert schemes which are based on staggered spatial grids into nonstaggered schemes. This procedure is then used to construct a new family of nonstaggered, central schemes for hyperbolic conservation laws by converting the family of staggered central schemes recent ..."
Abstract

Cited by 31 (13 self)
 Add to MetaCart
We present a general procedure to convert schemes which are based on staggered spatial grids into nonstaggered schemes. This procedure is then used to construct a new family of nonstaggered, central schemes for hyperbolic conservation laws by converting the family of staggered central schemes recently introduced in [H. Nessyahu and E. Tadmor, J. Comput. Phys., 87 (1990), pp. 408463; X. D. Liu and E. Tadmor, Numer. Math., 79 (1998), pp. 397425; G. S. Jiang and E. Tadmor, SIAM J. Sci. Comput., 19 (1998), pp. 18921917]. These new nonstaggered central schemes retain the desirable properties of simplicity and high resolution, and in particular, they yield Riemannsolverfree recipes which avoid dimensional splitting. Most important, the new central schemes avoid staggered grids and hence are simpler to implement in frameworks which involve complex geometries and boundary conditions.
Compact central WENO schemes for multidimensional conservation laws
 SIAM J. Sci. Comput
, 2000
"... We present new third and fifthorder Godunovtype central schemes for approximating solutions of the HamiltonJacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greate ..."
Abstract

Cited by 30 (8 self)
 Add to MetaCart
We present new third and fifthorder Godunovtype central schemes for approximating solutions of the HamiltonJacobi (HJ) equation in an arbitrary number of space dimensions. These are the first central schemes for approximating solutions of the HJ equations with an order of accuracy that is greater than two. In two space dimensions we present two versions for the thirdorder scheme: one scheme that is based on a genuinely twodimensional Central WENO reconstruction, and another scheme that is based on a simpler dimensionbydimension reconstruction. The simpler dimensionbydimension variant is then extended to a multidimensional fifthorder scheme. Our numerical examples in one, two and three space dimensions verify the expected order of accuracy of the schemes. Key words. HamiltonJacobi equations, central schemes, high order, WENO, CWENO.
Numerical passage from systems of conservation laws to HamiltonJacobi equations and relaxation schemes
 SIAM J. NUMER. ANAL
, 1998
"... In this paper we study the numerical transition from a HamiltonJacobi (HJ) equation to its associated system of conservation laws in arbitrary space dimensions. We first study how, in a very generic setting, one can recover the viscosity solutions of the HJ equation using the numerical solution ..."
Abstract

Cited by 27 (3 self)
 Add to MetaCart
In this paper we study the numerical transition from a HamiltonJacobi (HJ) equation to its associated system of conservation laws in arbitrary space dimensions. We first study how, in a very generic setting, one can recover the viscosity solutions of the HJ equation using the numerical solutions to the system of conservation laws. We then introduce a simple, secondorder relaxation scheme to solve the underlying weakly hyperbolic system of conservation laws.
HighResolution Nonoscillatory Central Schemes For HamiltonJacobi Equations
"... In this paper, we construct secondorder central schemes for multidimensional HamiltonJacobi equations and we show that they are nonoscillatory in the sense of satisfying the maximum principle. Thus, these schemes provide the first examples of nonoscillatory secondorder Godunovtype schemes based ..."
Abstract

Cited by 26 (5 self)
 Add to MetaCart
In this paper, we construct secondorder central schemes for multidimensional HamiltonJacobi equations and we show that they are nonoscillatory in the sense of satisfying the maximum principle. Thus, these schemes provide the first examples of nonoscillatory secondorder Godunovtype schemes based on global projection operators. Numerical experiments are performed; L 1 /L # errors and convergence rates are calculated. For convex Hamiltonians, numerical evidence confirms that our central schemes converge with secondorder rates, when measured in the L 1 norm advocated in our recent paper [Numer Math, to appear]. The standard L # norm, however, fails to detect this secondorder rate.