Results 1  10
of
169
A theory of type polymorphism in programming
 Journal of Computer and System Sciences
, 1978
"... The aim of this work is largely a practical one. A widely employed style of programming, particularly in structureprocessing languages which impose no discipline of types, entails defining procedures which work well on objects of a wide variety. We present a formal type discipline for such polymorp ..."
Abstract

Cited by 940 (0 self)
 Add to MetaCart
The aim of this work is largely a practical one. A widely employed style of programming, particularly in structureprocessing languages which impose no discipline of types, entails defining procedures which work well on objects of a wide variety. We present a formal type discipline for such polymorphic procedures in the context of a simple programming language, and a compile time typechecking algorithm w which enforces the discipline. A Semantic Soundness Theorem (based on a formal semantics for the language) states that welltype programs cannot “go wrong ” and a Syntactic Soundness Theorem states that if fl accepts a program then it is well typed. We also discuss extending these results to richer languages; a typechecking algorithm based on w is in fact already implemented and working, for the metalanguage ML in the Edinburgh LCF system, 1.
Algebraic laws for nondeterminism and concurrency
 Journal of the ACM
, 1985
"... Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly with its environment, its meaning cannot be presented naturally as an input/output function (as is often done in the denotational approach to semantics). In this paper, an alternative is put forth. Firs ..."
Abstract

Cited by 495 (12 self)
 Add to MetaCart
Abstract. Since a nondeterministic and concurrent program may, in general, communicate repeatedly with its environment, its meaning cannot be presented naturally as an input/output function (as is often done in the denotational approach to semantics). In this paper, an alternative is put forth. First, a definition is given of what it is for two programs or program parts to be equivalent for all observers; then two program parts are said to be observation congruent iff they are, in all program contexts, equivalent. The behavior of a program part, that is, its meaning, is defined to be its observation congruence class. The paper demonstrates, for a sequence of simple languages expressing finite (terminating) behaviors, that in each case observation congruence can be axiomatized algebraically. Moreover, with the addition of recursion and another simple extension, the algebraic language described here becomes a calculus for writing and specifying concurrent programs and for proving their properties.
Semantic foundations of concurrent constraint programming
, 1990
"... Concurrent constraint programming [Sar89,SR90] is a simple and powerful model of concurrent computation based on the notions of storeasconstraint and process as information transducer. The storeasvaluation conception of von Neumann computing is replaced by the notion that the store is a constr ..."
Abstract

Cited by 252 (26 self)
 Add to MetaCart
Concurrent constraint programming [Sar89,SR90] is a simple and powerful model of concurrent computation based on the notions of storeasconstraint and process as information transducer. The storeasvaluation conception of von Neumann computing is replaced by the notion that the store is a constraint (a finite representation of a possibly infinite set of valuations) which provides partial information about the possible values that variables can take. Instead of “reading” and “writing ” the values of variables, processes may now ask (check if a constraint is entailed by the store) and tell (augment the store with a new constraint). This is a very general paradigm which subsumes (among others) nondeterminate dataflow and the (concurrent) (constraint) logic programming languages. This paper develops the basic ideas involved in giving a coherent semantic account of these languages. Our first contribution is to give a simple and general formulation of the notion that a constraint system is a system of partial information (a la the information systems of Scott). Parameter passing and hiding is handled by borrowing ideas from the cylindric algebras of Henkin, Monk and Tarski to introduce diagonal elements and “cylindrification ” operations (which mimic the projection of information induced by existential quantifiers). The se;ond contribution is to introduce the notion of determinate concurrent constraint programming languages. The combinators treated are ask, tell, parallel composition, hiding and recursion. We present a simple model for this language based on the specificationoriented methodology of [OH86]. The crucial insight is to focus on observing the resting points of a process—those stores in which the process quiesces without producing more information. It turns out that for the determinate language, the set of resting points of a process completely characterizes its behavior on all inputs, since each process can be identified with a closure operator over the underlying constraint system. Very natural definitions of parallel composition, communication and hiding are given. For example, the parallel composition of two agents can be characterized by just the intersection of the sets of constraints associated with them. We also give a complete axiomatization of equality in this model, present
Domain Theory in Logical Form
 Annals of Pure and Applied Logic
, 1991
"... The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and system ..."
Abstract

Cited by 229 (10 self)
 Add to MetaCart
The mathematical framework of Stone duality is used to synthesize a number of hitherto separate developments in Theoretical Computer Science: • Domain Theory, the mathematical theory of computation introduced by Scott as a foundation for denotational semantics. • The theory of concurrency and systems behaviour developed by Milner, Hennessy et al. based on operational semantics. • Logics of programs. Stone duality provides a junction between semantics (spaces of points = denotations of computational processes) and logics (lattices of properties of processes). Moreover, the underlying logic is geometric, which can be computationally interpreted as the logic of observable properties—i.e. properties which can be determined to hold of a process on the basis of a finite amount of information about its execution. These ideas lead to the following programme:
Semantic Domains
, 1990
"... this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of highertype fu ..."
Abstract

Cited by 148 (3 self)
 Add to MetaCart
this report started working on denotational semantics in collaboration with Christopher Strachey. In order to fix some mathematical precision, he took over some definitions of recursion theorists such as Kleene, Nerode, Davis, and Platek and gave an approach to a simple type theory of highertype functionals. It was only after giving an abstract characterization of the spaces obtained (through the construction of bases) that he realized that recursive definitions of types could be accommodated as welland that the recursive definitions could incorporate function spaces as well. Though it was not the original intention to find semantics of the socalled untyped calculus, such a semantics emerged along with many ways of interpreting a very large variety of languages. A large number of people have made essential contributions to the subsequent developments, and they have shown in particular that domain theory is not one monolithic theory, but that there are several different kinds of constructions giving classes of domains appropriate for different mixtures of constructs. The story is, in fact, far from finished even today. In this report we will only be able to touch on a few of the possibilities, but we give pointers to the literature. Also, we have attempted to explain the foundations in an elementary wayavoiding heavy prerequisites (such as category theory) but still maintaining some level of abstractionwith the hope that such an introduction will aid the reader in going further into the theory. The chapter is divided into seven sections. In the second section we introduce a simple class of ordered structures and discuss the idea of fixed points of continuous functions as meanings for recursive programs. In the third section we discuss computable functions and...
Relational Properties of Domains
 Information and Computation
, 1996
"... New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a property o ..."
Abstract

Cited by 99 (5 self)
 Add to MetaCart
New tools are presented for reasoning about properties of recursively defined domains. We work within a general, categorytheoretic framework for various notions of `relation' on domains and for actions of domain constructors on relations. Freyd's analysis of recursive types in terms of a property of mixed initiality/finality is transferred to a corresponding property of invariant relations. The existence of invariant relations is proved under completeness assumptions about the notion of relation. We show how this leads to simpler proofs of the computational adequacy of denotational semantics for functional programming languages with userdeclared datatypes. We show how the initiality/finality property of invariant relations can be specialized to yield an induction principle for admissible subsets of recursively defined domains, generalizing the principle of structural induction for inductively defined sets. We also show how the initiality /finality property gives rise to the coinduct...
A Per Model of Secure Information Flow in Sequential Programs
 HIGHERORDER AND SYMBOLIC COMPUTATION
, 1998
"... This paper proposes an extensional semanticsbased formal specification of secure informationflow properties in sequential programs based on representing degrees of security by partial equivalence relations (pers). The specification clarifies and unifies a number of specific correctness arguments i ..."
Abstract

Cited by 93 (19 self)
 Add to MetaCart
This paper proposes an extensional semanticsbased formal specification of secure informationflow properties in sequential programs based on representing degrees of security by partial equivalence relations (pers). The specification clarifies and unifies a number of specific correctness arguments in the literature and connections to other forms of program analysis. The approach is inspired by (and in the deterministic case equivalent to) the use of partial equivalence relations in specifying bindingtime analysis, and is thus able to specify security properties of higherorder functions and "partially confidential data". We also show how the per approach can handle nondeterminism for a firstorder language, by using powerdomain semantics and show how probabilistic security properties can be formalised by using probabilistic powerdomain semantics. We illustrate the usefulness of the compositional nature of the security specifications by presenting a straightforward correctness proof for a simple typebased security analysis.
Notions of Computation Determine Monads
 Proc. FOSSACS 2002, Lecture Notes in Computer Science 2303
, 2002
"... We give semantics for notions of computation, also called computational effects, by means of operations and equations. We show that these generate several of the monads of primary interest that have been used to model computational effects, with the striking omission of the continuations monad, demo ..."
Abstract

Cited by 55 (7 self)
 Add to MetaCart
We give semantics for notions of computation, also called computational effects, by means of operations and equations. We show that these generate several of the monads of primary interest that have been used to model computational effects, with the striking omission of the continuations monad, demonstrating the latter to be of a different character, as is computationally true. We focus on semantics for global and local state, showing that taking operations and equations as primitive yields a mathematical relationship that reflects their computational relationship.
Presheaf Models for Concurrency
, 1999
"... In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their wo ..."
Abstract

Cited by 45 (19 self)
 Add to MetaCart
In this dissertation we investigate presheaf models for concurrent computation. Our aim is to provide a systematic treatment of bisimulation for a wide range of concurrent process calculi. Bisimilarity is defined abstractly in terms of open maps as in the work of Joyal, Nielsen and Winskel. Their work inspired this thesis by suggesting that presheaf categories could provide abstract models for concurrency with a builtin notion of bisimulation. We show how
Geometry of Interaction and Linear Combinatory Algebras
, 2000
"... this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by S ..."
Abstract

Cited by 43 (10 self)
 Add to MetaCart
this paper was quite di#erent, stemming from the axiomatics of categories of tangles (although the authors were aware of possible connections to iteration theories. In fact, similar axiomatics in the symmetric case, motivated by flowcharts and "flownomials" had been developed some years earlier by Stefanescu (Stefanescu 2000).) However, the first author realized, following a stimulating discussion with Gordon Plotkin, that traced monoidal categories provided a common denominator for the axiomatics of both the Girardstyle and AbramskyJagadeesanstyle versions of the Geometry of Interaction, at the basic level of the multiplicatives. This insight was presented in (Abramsky 1996), in which Girardstyle GoI was dubbed "particlestyle", since it concerns information particles or tokens flowing around a network, while the AbramskyJagadeesan style GoI was dubbed "wavestyle", since it concerns the evolution of a global information state or "wave". Formally, this distinction is based on whether the tensor product (i.e. the symmetric monoidal structure) in the underlying category is interpreted as a coproduct (particle style) or as a product (wave style). This computational distinction between coproduct and product interpretations of the same underlying network geometry turned out to have been partially anticipated, in a rather di#erent context, in a pioneering paper by E. S. Bainbridge (Bainbridge 1976), as observed by Dusko Pavlovic. These two forms of interpretation, and ways of combining them, have also been studied recently in (Stefanescu 2000). He uses the terminology "additive" for coproductbased (i.e. our "particlestyle") and "multiplicative" for productbased (i.e. our "wavestyle"); this is not suitable for our purposes, because of the clash with Linear Logic term...