Results 11  20
of
54
Once Upon a Polymorphic Type
, 1998
"... We present a sound typebased `usage analysis' for a realistic lazy functional language. Accurate information on the usage of program subexpressions in a lazy functional language permits a compiler to perform a number of useful optimisations. However, existing analyses are either adhoc and approxim ..."
Abstract

Cited by 38 (5 self)
 Add to MetaCart
We present a sound typebased `usage analysis' for a realistic lazy functional language. Accurate information on the usage of program subexpressions in a lazy functional language permits a compiler to perform a number of useful optimisations. However, existing analyses are either adhoc and approximate, or defined over restricted languages. Our work extends the Once Upon A Type system of Turner, Mossin, and Wadler (FPCA'95). Firstly, we add type polymorphism, an essential feature of typed functional programming languages. Secondly, we include general Haskellstyle userdefined algebraic data types. Thirdly, we explain and solve the `poisoning problem', which causes the earlier analysis to yield poor results. Interesting design choices turn up in each of these areas. Our analysis is sound with respect to a Launchburystyle operational semantics, and it is straightforward to implement. Good results have been obtained from a prototype implementation, and we are currently integrating the system into the Glasgow Haskell Compiler.
An Algebraic Presentation of Term Graphs, via GSMonoidal Categories
 Applied Categorical Structures
, 1999
"... . We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particula ..."
Abstract

Cited by 37 (24 self)
 Add to MetaCart
. We present a categorical characterisation of term graphs (i.e., finite, directed acyclic graphs labeled over a signature) that parallels the wellknown characterisation of terms as arrows of the algebraic theory of a given signature (i.e., the free Cartesian category generated by it). In particular, we show that term graphs over a signature \Sigma are onetoone with the arrows of the free gsmonoidal category generated by \Sigma. Such a category satisfies all the axioms for Cartesian categories but for the naturality of two transformations (the discharger ! and the duplicator r), providing in this way an abstract and clear relationship between terms and term graphs. In particular, the absence of the naturality of r and ! has a precise interpretation in terms of explicit sharing and of loss of implicit garbage collection, respectively. Keywords: algebraic theories, directed acyclic graphs, gsmonoidal categories, symmetric monoidal categories, term graphs. Mathematical Subject Clas...
A 2Categorical Presentation of Term Graph Rewriting
 CATEGORY THEORY AND COMPUTER SCIENCE, VOLUME 1290 OF LNCS
, 1997
"... It is wellknown that a term rewriting system can be faithfully described by a cartesian 2category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2categorical presentation for term graph rewriting. Building on a re ..."
Abstract

Cited by 34 (17 self)
 Add to MetaCart
It is wellknown that a term rewriting system can be faithfully described by a cartesian 2category, where horizontal arrows represent terms, and cells represent rewriting sequences. In this paper we propose a similar, original 2categorical presentation for term graph rewriting. Building on a result presented in [8], which shows that term graphs over a given signature are in onetoone correspondence with arrows of a gsmonoidal category freely generated from the signature, we associate with a term graph rewriting system a gsmonoidal 2category, and show that cells faithfully represent its rewriting sequences. We exploit the categorical framework to relate term graph rewriting and term rewriting, since gsmonoidal (2)categories can be regarded as "weak" cartesian (2)categories, where certain (2)naturality axioms have been dropped.
The Temporal Logic of Coalgebras via Galois Algebras
, 1999
"... This paper introduces a temporal logic for coalgebras. Nexttime and lasttime operators are dened for a coalgebra, acting on predicates on the state space. They give rise to what is called a Galois algebra. Galois algebras form models of temporal logics like Linear Temporal Logic (LTL) and Computatio ..."
Abstract

Cited by 33 (7 self)
 Add to MetaCart
This paper introduces a temporal logic for coalgebras. Nexttime and lasttime operators are dened for a coalgebra, acting on predicates on the state space. They give rise to what is called a Galois algebra. Galois algebras form models of temporal logics like Linear Temporal Logic (LTL) and Computation Tree Logic (CTL). The mapping from coalgebras to Galois algebras turns out to be functorial, yielding indexed categorical structures. This gives many examples, for coalgebras of polynomial functors on sets. Additionally, it will be shown how \fuzzy" predicates on metric spaces, and predicates on presheaves, yield indexed Galois algebras, in basically the same coalgebraic manner. Keywords: Temporal logic, coalgebra, Galois connection, fuzzy predicate, presheaf Classication: 68Q60, 03G05, 03G25, 03G30 (AMS'91); D.2.4, F.3.1, F.4.1 (CR'98). 1 Introduction This paper combines the areas of coalgebra and of temporal logic. Coalgebras are simple mathematical structures (similar, but dual, to...
Games and full abstraction for nondeterministic languages
, 1999
"... Abstract Nondeterminism is a pervasive phenomenon in computation. Often it arises as an emergent property of a complex system, typically as the result of contention for access to shared resources. In such circumstances, we cannot always know, in advance, exactly what will happen. In other circumstan ..."
Abstract

Cited by 31 (3 self)
 Add to MetaCart
Abstract Nondeterminism is a pervasive phenomenon in computation. Often it arises as an emergent property of a complex system, typically as the result of contention for access to shared resources. In such circumstances, we cannot always know, in advance, exactly what will happen. In other circumstances, nondeterminism is explicitly introduced as a means of abstracting away from implementation details such as precise command scheduling and control flow. However, the kind of behaviours exhibited by nondeterministic computations can be extremely subtle in comparison to those of their deterministic counterparts and reasoning about such programs is notoriously tricky as a result. It is therefore important to develop semantic tools to improve our understanding of, and aid our reasoning about, such nondeterministic programs. In this thesis, we extend the framework of game semantics to encompass nondeterministic computation. Game semantics is a relatively recent development in denotational semantics; its main novelty is that it views a computation not as a static entity, but rather as a dynamic process of interaction. This perspective makes the theory wellsuited to modelling many aspects of computational processes: the original use of game semantics in modelling the simple functional language PCF has subsequently been extended to handle more complex control structures such as references and continuations.
An Inductive View of Graph Transformation
 In Workshop on Algebraic Development Techniques
, 1998
"... . The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result i ..."
Abstract

Cited by 30 (12 self)
 Add to MetaCart
. The dynamic behavior of rulebased systems (like term rewriting systems [24], process algebras [27], and so on) can be traditionally determined in two orthogonal ways. Either operationally, in the sense that a way of embedding a rule into a state is devised, stating explicitly how the result is built: This is the role played by (the application of) a substitution in term rewriting. Or inductively, showing how to build the class of all possible reductions from a set of basic ones: For term rewriting, this is the usual definition of the rewrite relation as the minimal closure of the rewrite rules. As far as graph transformation is concerned, the operational view is by far more popular: In this paper we lay the basis for the orthogonal view. We first provide an inductive description for graphs as arrows of a freely generated dgsmonoidal category. We then apply 2categorical techniques, already known for term and term graph rewriting [29, 7], recasting in this framework the...
CallbyName, CallbyValue, CallbyNeed, and the Linear Lambda Calculus
, 1994
"... Girard described two translations of intuitionistic logic into linear logic, one where A > B maps to (!A) o B, and another where it maps to !(A o B). We detail the action of these translations on terms, and show that the first corresponds to a callbyname calculus, while the second corresponds t ..."
Abstract

Cited by 28 (5 self)
 Add to MetaCart
Girard described two translations of intuitionistic logic into linear logic, one where A > B maps to (!A) o B, and another where it maps to !(A o B). We detail the action of these translations on terms, and show that the first corresponds to a callbyname calculus, while the second corresponds to callbyvalue. We further show that if the target of the translation is taken to be an affine calculus, where ! controls contraction but weakening is allowed everywhere, then the second translation corresponds to a callbyneed calculus, as recently defined by Ariola, Felleisen, Maraist, Odersky, and Wadler. Thus the different calling mechanisms can be explained in terms of logical translations, bringing them into the scope of the CurryHoward isomorphism.
Domain theory for concurrency
, 2003
"... Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey. ..."
Abstract

Cited by 23 (6 self)
 Add to MetaCart
Concurrent computation can be given an abstract mathematical treatment very similar to that provided for sequential computation by domain theory and denotational semantics of Scott and Strachey.
Linear lambdaCalculus and Categorical Models Revisited
, 1992
"... this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig. 1. We us ..."
Abstract

Cited by 22 (0 self)
 Add to MetaCart
this paper we shall consider multiplicative exponential linear logic (MELL), i.e. the fragment which has multiplicative conjunction or tensor,\Omega , linear implication, \Gammaffi, and the logical operator "exponential", !. We recall the rules for MELL in a sequent calculus system in Fig. 1. We use capital Greek letters \Gamma; \Delta for sequences of formulae and A; B for single formulae. The Exchange rule simply allows the permutation of assumptions. The `! rules' have been given names by other authors. ! L\Gamma1 is called Weakening , ! L\Gamma2 Contraction, ! L\Gamma3 Dereliction and (! R ) Promotion
Relating Two Categorical Models of Term Rewriting
 Rewriting Techniques and Applications, volume 914 of LNCS
, 1995
"... . In the last years there has been a growing interest towards categorical models for term rewriting systems (trs's). In our opinion, very interesting are those associating to each trs's a catenriched structure: a category whose homsets are categories. Interpreting rewriting steps as morphisms ..."
Abstract

Cited by 18 (11 self)
 Add to MetaCart
. In the last years there has been a growing interest towards categorical models for term rewriting systems (trs's). In our opinion, very interesting are those associating to each trs's a catenriched structure: a category whose homsets are categories. Interpreting rewriting steps as morphisms in homcategories, these models provide rewriting systems with a concurrent semantics in a clean algebraic way. In this paper we provide a unified presentation of two models recently proposed in literature by Jos'e Meseguer [Mes90, Mes92, MOM93] and John Stell [Ste92, Ste94], respectively, pursuing a critical analysis of both of them. More precisely, we show why they are to a certain extent unsatisfactory in providing a concurrent semantics for rewriting systems. It turns out that the derivation space of Meseguer's Rewriting Logic associated with each term (i.e., the set of coinitial computations) fails in general to form a prime algebraic domain: a condition that is generally cons...