Results 1 
3 of
3
A Mixed Linear and NonLinear Logic: Proofs, Terms and Models (Preliminary Report)
, 1994
"... Intuitionistic linear logic regains the expressive power of intuitionistic logic through the ! (`of course') modality. Benton, Bierman, Hyland and de Paiva have given a term assignment system for ILL and an associated notion of categorical model in which the ! modality is modelled by a comonad ..."
Abstract

Cited by 93 (3 self)
 Add to MetaCart
Intuitionistic linear logic regains the expressive power of intuitionistic logic through the ! (`of course') modality. Benton, Bierman, Hyland and de Paiva have given a term assignment system for ILL and an associated notion of categorical model in which the ! modality is modelled by a comonad satisfying certain extra conditions. Ordinary intuitionistic logic is then modelled in a cartesian closed category which arises as a full subcategory of the category of coalgebras for the comonad. This paper attempts to explain the connection between ILL and IL more directly and symmetrically by giving a logic, term calculus and categorical model for a system in which the linear and nonlinear worlds exist on an equal footing, with operations allowing one to pass in both directions. We start from the categorical model of ILL given by Benton, Bierman, Hyland and de Paiva and show that this is equivalent to having a symmetric monoidal adjunction between a symmetric monoidal closed category and a cartesian closed category. We then derive both a sequent calculus and a natural deduction presentation of the logic corresponding to the new notion of model.
Operational Interpretations of Linear Logic
, 1998
"... Two different operational interpretations of intuitionistic linear logic have been proposed in the literature. The simplest interpretation recomputes nonlinear values every time they are required. It has good memorymanagement properties, but is often dismissed as being too inefficient. Alternative ..."
Abstract

Cited by 27 (0 self)
 Add to MetaCart
Two different operational interpretations of intuitionistic linear logic have been proposed in the literature. The simplest interpretation recomputes nonlinear values every time they are required. It has good memorymanagement properties, but is often dismissed as being too inefficient. Alternatively, one can memoize the results of evaluating nonlinear values. This avoids any recomputation, but has weaker memorymanagement properties. Using a novel combination of typetheoretic and operational techniques we give a concise formal comparison of the two interpretations. Moreover, we show that there is a subset of linear logic where the two operational interpretations coincide. In this subset, which is sufficiently expressive to encode callbyvalue lambdacalculus, we can have the best of both worlds: a simple and efficient implementation, and good memorymanagement properties. Keywords: linear logic, operational semantics, callbyvalue lambda calculus, memory management. 1 Introductio...