Results 1  10
of
17
Convex Nondifferentiable Optimization: A Survey Focussed On The Analytic Center Cutting Plane Method.
, 1999
"... We present a survey of nondifferentiable optimization problems and methods with special focus on the analytic center cutting plane method. We propose a selfcontained convergence analysis, that uses the formalism of the theory of selfconcordant functions, but for the main results, we give direct pr ..."
Abstract

Cited by 51 (2 self)
 Add to MetaCart
We present a survey of nondifferentiable optimization problems and methods with special focus on the analytic center cutting plane method. We propose a selfcontained convergence analysis, that uses the formalism of the theory of selfconcordant functions, but for the main results, we give direct proofs based on the properties of the logarithmic function. We also provide an in depth analysis of two extensions that are very relevant to practical problems: the case of multiple cuts and the case of deep cuts. We further examine extensions to problems including feasible sets partially described by an explicit barrier function, and to the case of nonlinear cuts. Finally, we review several implementation issues and discuss some applications.
On Lagrangian relaxation of quadratic matrix constraints
 SIAM J. Matrix Anal. Appl
, 2000
"... Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equ ..."
Abstract

Cited by 50 (19 self)
 Add to MetaCart
Abstract. Quadratically constrained quadratic programs (QQPs) play an important modeling role for many diverse problems. These problems are in general NP hard and numerically intractable. Lagrangian relaxations often provide good approximate solutions to these hard problems. Such relaxations are equivalent to semidefinite programming relaxations. For several special cases of QQP, e.g., convex programs and trust region subproblems, the Lagrangian relaxation provides the exact optimal value, i.e., there is a zero duality gap. However, this is not true for the general QQP, or even the QQP with two convex constraints, but a nonconvex objective. In this paper we consider a certain QQP where the quadratic constraints correspond to the matrix orthogonality condition XXT = I. For this problem we show that the Lagrangian dual based on relaxing the constraints XXT = I and the seemingly redundant constraints XT X = I has a zero duality gap. This result has natural applications to quadratic assignment and graph partitioning problems, as well as the problem of minimizing the weighted sum of the largest eigenvalues of a matrix. We also show that the technique of relaxing quadratic matrix constraints can be used to obtain a strengthened semidefinite relaxation for the maxcut problem. Key words. Lagrangian relaxations, quadratically constrained quadratic programs, semidefinite programming, quadratic assignment, graph partitioning, maxcut problems
Approximation Algorithms for Quadratic Programming
, 1998
"... We consider the problem of approximating the global minimum of a general quadratic program (QP) with n variables subject to m ellipsoidal constraints. For m = 1, we rigorously show that an fflminimizer, where error ffl 2 (0; 1), can be obtained in polynomial time, meaning that the number of arithme ..."
Abstract

Cited by 23 (5 self)
 Add to MetaCart
We consider the problem of approximating the global minimum of a general quadratic program (QP) with n variables subject to m ellipsoidal constraints. For m = 1, we rigorously show that an fflminimizer, where error ffl 2 (0; 1), can be obtained in polynomial time, meaning that the number of arithmetic operations is a polynomial in n, m, and log(1=ffl). For m 2, we present a polynomialtime (1 \Gamma 1 m 2 )approximation algorithm as well as a semidefinite programming relaxation for this problem. In addition, we present approximation algorithms for solving QP under the box constraints and the assignment polytope constraints. Key words. Quadratic programming, global minimizer, polynomialtime approximation algorithm The work of the first author was supported by the Australian Research Council; the second author was supported in part by the Department of Management Sciences of the University of Iowa where he performed this research during a research leave, and by the Natural Scien...
Homogeneous Analytic Center Cutting Plane Methods for Convex Problems and Variational Inequalities
, 1997
"... In this paper we consider a new analytic center cutting plane method in a projective space. We prove the efficiency estimates for the general scheme and show that these results can be used in the analysis of a feasibility problem, the variational inequality problem and the problem of constrained min ..."
Abstract

Cited by 20 (1 self)
 Add to MetaCart
In this paper we consider a new analytic center cutting plane method in a projective space. We prove the efficiency estimates for the general scheme and show that these results can be used in the analysis of a feasibility problem, the variational inequality problem and the problem of constrained minimization. Our analysis is valid even for the problems whose solution belongs to the boundary of the domain. Keywords: Cutting plane, analytic centers. This research is partially supported by the Fonds National Suisse (grant # 1242503.94) 1 Introduction Cutting plane methods are designed to solve convex problems with the following property. A socalled oracle provides a first order information in the form of cutting planes that separate the query point from the set of solutions. Given a sequence of query points, the oracle answers a set of cutting planes that generates a polyhedral relaxation of the solution set. As the sequence of query points increases, the relaxation gets increasin...
The Analytic Center Cutting Plane Method with Semidefinite Cuts
 SIAM JOURNAL ON OPTIMIZATION
, 2000
"... We analyze an analytic center cutting plane algorithm for the convex feasibility problems with semidefinite cuts. At each iteration the oracle returns a pdimensional semidefinite cut at an approximate analytic center of the set of localization. The set of localization, which contains the solution s ..."
Abstract

Cited by 16 (1 self)
 Add to MetaCart
We analyze an analytic center cutting plane algorithm for the convex feasibility problems with semidefinite cuts. At each iteration the oracle returns a pdimensional semidefinite cut at an approximate analytic center of the set of localization. The set of localization, which contains the solution set, is a compact set consists of piecewise algebraic surfaces. We prove that the analytic center is recovered after adding a pdimensional cut in O(p log(p 1)) damped Newton's iteration. We also prove that the algorithm stops when the dimension of the accumulated block diagonal matrix cut reaches to the bound of O (p 2 m 3 =ffl 2 ), where p is the maximum dimension cut and ffl is radius of the largest ball contained in the solution set.
Logarithmic Barrier Decomposition Methods for SemiInfinite Programming
, 1996
"... A computational study of some logarithmic barrier decomposition algorithms for semiinfinite programming is presented in this paper. The conceptual algorithm is a straightforward adaptation of the logarithmic barrier cutting plane algorithm which was presented recently by den Hertog et al., to solv ..."
Abstract

Cited by 9 (1 self)
 Add to MetaCart
A computational study of some logarithmic barrier decomposition algorithms for semiinfinite programming is presented in this paper. The conceptual algorithm is a straightforward adaptation of the logarithmic barrier cutting plane algorithm which was presented recently by den Hertog et al., to solve semiinfinite programming problems. Usually decomposition (cutting plane methods) use cutting planes to improve the localization of the given problem. In this paper we propose an extension which uses linear cuts to solve large scale, difficult real world problems. This algorithm uses both static and (doubly) dynamic enumeration of the parameter space and allows for multiple cuts to be simultaneously added for larger/difficult problems. The algorithm is implemented both on sequential and parallel computers. Implementation issues and parallelization strategies are discussed and encouraging computational results are presented. Keywords: column generation, convex programming, cutting plane met...
The Analytic Center Quadratic Cut Method (ACQCM) for Strongly Monotone Variational Inequality Problems
 SIAM Journal on Optimization
, 1998
"... For strongly monotone variational inequality problems (VIP) convergence of an algorithm is investigated which, at each iteration, adds a quadratic cut through the analytic center of the subsequently shrinking convex body. It is shown that the sequence of analytic centers converges to the unique solu ..."
Abstract

Cited by 6 (0 self)
 Add to MetaCart
For strongly monotone variational inequality problems (VIP) convergence of an algorithm is investigated which, at each iteration, adds a quadratic cut through the analytic center of the subsequently shrinking convex body. It is shown that the sequence of analytic centers converges to the unique solution at O(1= p k). Key words: Analytic center, quadratic cuts. 1 Introduction Variational Inequality Problems (VIPs) give a convenient mathematical framework for discussing a number of interesting problems such as optimization problems, saddle point problems or equilibrium problems. It is known for some time now that a specific ellipsoid algorithm solves strongly monotone VIPs with polynomial time complexity, see Luthi [5]. 1 In practice, however, the ellipsoid method is not convincing. More recently, Nesterov and Nemirovsky [7] suggested a pathfollowing approach with pseudopolynomial time complexity for a class of monotone VIPs. In their pathfollowing approach higher order derivative...
A secondorder cone cutting surface method: complexity and application
, 2005
"... We present an analytic center cutting surface algorithm that uses mixed linear and multiple secondorder cone cuts. Theoretical issues and applications of this technique are discussed. From the theoretical viewpoint, we derive two complexity results. We show that an approximate analytic center can ..."
Abstract

Cited by 6 (5 self)
 Add to MetaCart
We present an analytic center cutting surface algorithm that uses mixed linear and multiple secondorder cone cuts. Theoretical issues and applications of this technique are discussed. From the theoretical viewpoint, we derive two complexity results. We show that an approximate analytic center can be recovered after simultaneously adding p secondorder cone
An interior point cutting plane method for the convex feasibility problem with secondorder cone inequalities
, 2004
"... ..."
A Nonlinear Analytic Center Cutting Plane Method For A Class Of Convex Programming Problems
 SIAM Journal on Optimization
, 1996
"... . A cutting plane algorithm for minimizing a convex function subject to constraints defined by a separation oracle is presented. The algorithm is based on approximate analytic centers. The nonlinearity of the objective function is taken into account, yet the feasible region is approximated by a cont ..."
Abstract

Cited by 5 (2 self)
 Add to MetaCart
. A cutting plane algorithm for minimizing a convex function subject to constraints defined by a separation oracle is presented. The algorithm is based on approximate analytic centers. The nonlinearity of the objective function is taken into account, yet the feasible region is approximated by a containing polytope. This containing polytope is regularly updated by adding a new cut through a test point. Each test point is an approximate analytic center of the intersection of a containing polytope and a level set of the nonlinear objective function. We establish the complexity of the algorithm. Our complexity estimate is given in terms of the problem dimension, the desired accuracy of an approximate solution and other parameters that depend on the geometry of a specific instance of the problem. Key words. convex programming, interiorpoint methods, analytic center, cutting planes, potential function, selfconcordance AMS subject classifications. 90C06, 90C25 1. Introduction. Recently, ...