Results 1 
4 of
4
Symbolic Boolean manipulation with ordered binarydecision diagrams
 ACM Computing Surveys
, 1992
"... Ordered BinaryDecision Diagrams (OBDDS) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satmfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented as grap ..."
Abstract

Cited by 879 (11 self)
 Add to MetaCart
Ordered BinaryDecision Diagrams (OBDDS) represent Boolean functions as directed acyclic graphs. They form a canonical representation, making testing of functional properties such as satmfiability and equivalence straightforward. A number of operations on Boolean functions can be implemented as graph algorithms on OBDD
On the Complexity of VLSI Implementations and Graph Representations of Boolean Functions with Application to Integer Multiplication
 IEEE Transactions on Computers
, 1998
"... This paper presents lower bound results on Boolean function complexity under two different models. The first is an abstraction of tradeoffs between chip area and speed in very large scale integrated (VLSI) circuits. The second is the ordered binary decision diagram (OBDD) representation used as a da ..."
Abstract

Cited by 233 (10 self)
 Add to MetaCart
This paper presents lower bound results on Boolean function complexity under two different models. The first is an abstraction of tradeoffs between chip area and speed in very large scale integrated (VLSI) circuits. The second is the ordered binary decision diagram (OBDD) representation used as a data structure for symbolically representing and manipulating Boolean functions. These lower bounds demonstrate the fundamental limitations of VLSI as an implementation medium, and OBDDs as a data structure. They also lend insight into what properties of a Boolean function lead to high complexity under these models. Related techniques can be...
Binary Decision Diagrams and Beyond: Enabling Technologies for Formal Verification
, 1995
"... Ordered Binary Decision Diagrams (OBDDs) have found widespread use in CAD applications such as formal verification, logic synthesis, and test generation. OBDDs represent Boolean functions in a form that is both canonical and compact for many practical cases. They can be generated and manipulated by ..."
Abstract

Cited by 105 (0 self)
 Add to MetaCart
Ordered Binary Decision Diagrams (OBDDs) have found widespread use in CAD applications such as formal verification, logic synthesis, and test generation. OBDDs represent Boolean functions in a form that is both canonical and compact for many practical cases. They can be generated and manipulated by efficient graph algorithms. Researchers have found that many tasks can be expressed as series of operations on Boolean functions, making them candidates for OBDDbased methods. The success of OBDDs has inspired efforts to improve their efficiency and to expand their range of applicability. Techniques have been discovered to make the representation more compact and to represent other classes of functions. This has led to improved performance on existing OBDD applications, as well as enabled new classes of problems to be solved. This paper provides an overview of the state of the art in graphbased function representations. We focus on several recent advances of particular importance for forma...
Techniques For Efficient Formal Verification Using Binary Decision Diagrams
, 1995
"... The appeal of automatic formal verification is that it's automatic  minimal human labor and expertise should be needed to get useful results and counterexamples. BDD(binary decision diagram)based approaches have promised to allow automatic verification of complex, real systems. For large classes ..."
Abstract

Cited by 15 (0 self)
 Add to MetaCart
The appeal of automatic formal verification is that it's automatic  minimal human labor and expertise should be needed to get useful results and counterexamples. BDD(binary decision diagram)based approaches have promised to allow automatic verification of complex, real systems. For large classes of problems, however, (including many distributed protocols, multiprocessor systems, and network architectures) this promise has yet to be fulfilled. Indeed, the few successes have required extensive time and effort from sophisticated researchers in the field. Clearly, techniques are needed that are more sophisticated than the obvious direct implementation of theoretical results. This thesis addresses that need, emphasizing an application domain that has been particularly difficult for BDDbased methods  highlevel models of systems or distributed protocols  rather than gatelevel descriptions of circuits. Additionally, the emphasis is on providing useful debugging information for the...