Results 1  10
of
20
Matrix estimation by universal singular value thresholding
, 2012
"... Abstract. Consider the problem of estimating the entries of a large matrix, when the observed entries are noisy versions of a small random fraction of the original entries. This problem has received widespread attention in recent times, especially after the pioneering works of Emmanuel Candès and ..."
Abstract

Cited by 28 (0 self)
 Add to MetaCart
(Show Context)
Abstract. Consider the problem of estimating the entries of a large matrix, when the observed entries are noisy versions of a small random fraction of the original entries. This problem has received widespread attention in recent times, especially after the pioneering works of Emmanuel Candès and collaborators. This paper introduces a simple estimation procedure, called Universal Singular Value Thresholding (USVT), that works for any matrix that has ‘a little bit of structure’. Surprisingly, this simple estimator achieves the minimax error rate up to a constant factor. The method is applied to solve problems related to low rank matrix estimation, blockmodels, distance matrix completion, latent space models, positive definite matrix completion, graphon estimation, and generalized Bradley–Terry models for pairwise comparison. 1.
Convex recovery from interferometric measurements. arXiv preprint arXiv:1307.6864
, 2013
"... This note formulates a deterministic recovery result for vectors x from quadratic measurements of the form (Ax)i(Ax)j for some leftinvertible A. Recovery is exact, or stable in the noisy case, when the couples (i, j) are chosen as edges of a wellconnected graph. One possible way of obtaining the ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
(Show Context)
This note formulates a deterministic recovery result for vectors x from quadratic measurements of the form (Ax)i(Ax)j for some leftinvertible A. Recovery is exact, or stable in the noisy case, when the couples (i, j) are chosen as edges of a wellconnected graph. One possible way of obtaining the solution is as a feasible point of a simple semidefinite program. Furthermore, we show how the proportionality constant in the error estimate depends on the spectral gap of a dataweighted graph Laplacian. Such quadratic measurements have found applications in phase retrieval, angular synchronization, and more recently interferometric waveform inversion. Acknowledgments. The authors would like to thank Amit Singer for interesting discussions. 1
Beyond convex relaxation: A polynomial–time non–convex optimization approach to network localization
, 2013
"... AbstractThe successful deployment and operation of locationaware networks, which have recently found many applications, depends crucially on the accurate localization of the nodes. Currently, a powerful approach to localization is that of convex relaxation. In a typical application of this approa ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
AbstractThe successful deployment and operation of locationaware networks, which have recently found many applications, depends crucially on the accurate localization of the nodes. Currently, a powerful approach to localization is that of convex relaxation. In a typical application of this approach, the localization problem is first formulated as a rankconstrained semidefinite program (SDP), where the rank corresponds to the target dimension in which the nodes should be localized. Then, the nonconvex rank constraint is either dropped or replaced by a convex surrogate, thus resulting in a convex optimization problem. In this paper, we explore the use of a nonconvex surrogate of the rank function, namely the socalled Schatten quasinorm, in network localization. Although the resulting optimization problem is nonconvex, we show, for the first time, that a firstorder critical point can be approximated to arbitrary accuracy in polynomial time by an interiorpoint algorithm. Moreover, we show that such a firstorder point is already sufficient for recovering the node locations in the target dimension if the input instance satisfies certain established uniqueness properties in the literature. Finally, our simulation results show that in many cases, the proposed algorithm can achieve more accurate localization results than standard SDP relaxations of the problem.
Global registration of multiple point clouds using semidefinite programming. arXiv:1306.5226 [cs.CV
, 2013
"... ABSTRACT. Consider N points in R d and M local coordinate systems that are related through unknown rigid transforms. For each point we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordin ..."
Abstract

Cited by 8 (4 self)
 Add to MetaCart
(Show Context)
ABSTRACT. Consider N points in R d and M local coordinate systems that are related through unknown rigid transforms. For each point we are given (possibly noisy) measurements of its local coordinates in some of the coordinate systems. Alternatively, for each coordinate system, we observe the coordinates of a subset of the points. The problem of estimating the global coordinates of the N points (up to a rigid transform) from such measurements comes up in distributed approaches to molecular conformation and sensor network localization, and also in computer vision and graphics. The leastsquares formulation, though nonconvex, has a well known closedform solution for the case M = 2 (based on the singular value decomposition). However, no closed form solution is known for M ≥ 3. In this paper, we propose a semidefinite relaxation of the leastsquares formulation, and prove conditions for exact and stable recovery for both this relaxation and for a previously proposed spectral relaxation. In particular, using results from rigidity theory and the theory of semidefinite programming, we prove that the semidefinite relaxation can guarantee recovery under more adversarial measurements compared to the spectral counterpart. We perform numerical experiments on simulated data to confirm the theoretical findings. We empirically demonstrate that (a) unlike the spectral relaxation, the relaxation gap is mostly zero for the semidefinite program (i.e., we are able to solve the original nonconvex problem) up to a certain noise threshold, and (b) the semidefinite program performs significantly better than spectral and manifoldoptimization methods, particularly at large noise levels.
Distributed Maximum Likelihood Sensor Network Localization
 IEEE Transactions on Signal Processing
, 2014
"... Abstract—We propose a class of convex relaxations to solve the sensor network localization problem, based on a maximum likelihood (ML) formulation. This class, as well as the tightness of the relaxations, depends on the noise probability density function (PDF) of the collected measurements.We deri ..."
Abstract

Cited by 7 (3 self)
 Add to MetaCart
Abstract—We propose a class of convex relaxations to solve the sensor network localization problem, based on a maximum likelihood (ML) formulation. This class, as well as the tightness of the relaxations, depends on the noise probability density function (PDF) of the collected measurements.We derive a computational efficient edgebased version of this ML convex relaxation class and we design a distributed algorithm that enables the sensor nodes to solve these edgebased convex programs locally by communicating only with their close neighbors. This algorithm relies on the alternating direction method of multipliers (ADMM), it converges to the centralized solution, it can run asynchronously, and it is computation errorresilient. Finally, we compare our proposed distributed scheme with other available methods, both analytically and numerically, and we argue the added value of ADMM, especially for largescale networks. Index Terms—Distributed optimization, convex relaxations, sensor network localization, distributed algorithms, ADMM, distributed localization, sensor networks, maximum likelihood. I.
Calibration Using Matrix Completion with Application to Ultrasound Tomography
, 2011
"... We study the calibration process in circular ultrasound tomography devices where the sensor positions deviate from the circumference of a perfect circle. This problem arises in a variety of applications in signal processing ranging from breast imaging to sensor network localization. We introduce a n ..."
Abstract

Cited by 4 (2 self)
 Add to MetaCart
We study the calibration process in circular ultrasound tomography devices where the sensor positions deviate from the circumference of a perfect circle. This problem arises in a variety of applications in signal processing ranging from breast imaging to sensor network localization. We introduce a novel method of calibration/localization based on the timeofflight (ToF) measurements between sensors when the enclosed medium is homogeneous. In the presence of all the pairwise ToFs, one can easily estimate the sensor positions using multidimensional scaling (MDS) method. In practice however, due to the transitional behaviour of the sensors and the beam form of the transducers, the ToF measurements for closeby sensors are unavailable. Further, random malfunctioning of the sensors leads to random missing ToF measurements. On top of the missing entries, in practice an unknown time delay is also added to the measurements. In this work, we incorporate the fact that a matrix defined from all the ToF measurements is of rank at most four. In order to estimate the missing ToFs, we apply a stateoftheart lowrank matrix completion algorithm, OPTSPACE. To find the correct positions of the sensors (our ultimate goal) we then apply MDS. We show analytic bounds on the overall error of the whole process in the presence of noise and hence deduce its robustness. Finally, we confirm the functionality of our method in practice by simulations mimicking the measurements of a circular ultrasound tomography device.
Robust Localization from Incomplete Local Information
"... We consider the problem of localizing wireless devices in an adhoc network embedded in a ddimensional Euclidean space. Obtaining a good estimate of where wireless devices are located is crucial in wireless network applications including environment monitoring, geographic routing and topology cont ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
We consider the problem of localizing wireless devices in an adhoc network embedded in a ddimensional Euclidean space. Obtaining a good estimate of where wireless devices are located is crucial in wireless network applications including environment monitoring, geographic routing and topology control. When the positions of the devices are unknown and only local distance information is given, we need to infer the positions from these local distance measurements. This problem is particularly challenging when we only have access to measurements that have limited accuracy and are incomplete. We consider the extreme case of this limitation on the available information, namely only the connectivity information is available, i.e., we only know whether a pair of nodes is within a fixed detection range of each other or not, and no information is known about how far apart they are. Further, to account for detection failures, we assume that even if a pair of devices is within the detection range, it fails to detect the presence of one another with some probability and this probability of failure depends on how far apart those devices are. Given this limited information, we investigate the performance of a centralized positioning algorithm MDSMAP introduced by Shang et al. [3], and a distributed positioning algorithm HOPTERRAIN introduced by Savarese et al. [4]. In particular, for a network consisting of n devices positioned randomly, we provide a bound on the resulting error for both algorithms. We show that the error is bounded, decreasing at a rate that is proportional to RCritical/R, where RCritical is the critical detection range when the resulting random network starts to be connected, and R is the detection range of each device.
Iterative universal rigidity
, 2014
"... A bar framework determined by a finite graph G and configuration p = (p1,...,pn) in Rd is universally rigid if it is rigid in any RD ⊃ Rd. We provide a characterization of universally rigidity for any graph G and any configuration p in terms of a sequence of affine subsets of the space of configurat ..."
Abstract

Cited by 2 (0 self)
 Add to MetaCart
(Show Context)
A bar framework determined by a finite graph G and configuration p = (p1,...,pn) in Rd is universally rigid if it is rigid in any RD ⊃ Rd. We provide a characterization of universally rigidity for any graph G and any configuration p in terms of a sequence of affine subsets of the space of configurations. This corresponds to a facial reduction process for closed finite dimensional convex cones.