Results 1  10
of
18
A Hidden Agenda
 Theoretical Computer Science
, 2000
"... This paper publicly reveals, motivates, and surveys the results of an ambitious hidden agenda for applying algebra to software engineering. The paper reviews selected literature, introduces a new perspective on nondeterminism, and features powerful hidden coinduction techniques for proving behaviora ..."
Abstract

Cited by 110 (23 self)
 Add to MetaCart
This paper publicly reveals, motivates, and surveys the results of an ambitious hidden agenda for applying algebra to software engineering. The paper reviews selected literature, introduces a new perspective on nondeterminism, and features powerful hidden coinduction techniques for proving behavioral properties of concurrent systems, especially renements; some proofs are given using OBJ3. We also discuss where modularization, bisimulation, transition systems and combinations of the object, logic, constraint and functional paradigms t into our hidden agenda. 1 Introduction Algebra can be useful in many dierent ways in software engineering, including specication, validation, language design, and underlying theory. Specication and validation can help in the practical production of reliable programs, advances in language design can help improve the state of the art, and theory can help with building new tools to increase automation, as well as with showing correctness of the whole e...
Institution Morphisms
, 2001
"... Institutions formalize the intuitive notion of logical system, including syntax, semantics, and the relation of satisfaction between them. Our exposition emphasizes the natural way that institutions can support deduction on sentences, and inclusions of signatures, theories, etc.; it also introduces ..."
Abstract

Cited by 58 (18 self)
 Add to MetaCart
Institutions formalize the intuitive notion of logical system, including syntax, semantics, and the relation of satisfaction between them. Our exposition emphasizes the natural way that institutions can support deduction on sentences, and inclusions of signatures, theories, etc.; it also introduces terminology to clearly distinguish several levels of generality of the institution concept. A surprising number of different notions of morphism have been suggested for forming categories with institutions as objects, and an amazing variety of names have been proposed for them. One goal of this paper is to suggest a terminology that is uniform and informative to replace the current chaotic nomenclature; another goal is to investigate the properties and interrelations of these notions in a systematic way. Following brief expositions of indexed categories, diagram categories, twisted relations, and Kan extensions, we demonstrate and then exploit the duality between institution morphisms in the original sense of Goguen and Burstall, and the "plain maps" of Meseguer, obtaining simple uniform proofs of completeness and cocompleteness for both resulting categories. Because of this duality, we prefer the name "comorphism" over "plain map;" moreover, we argue that morphisms are more natural than comorphisms in many cases. We also consider "theoroidal" morphisms and comorphisms, which generalize signatures to theories, based on a theoroidal institution construction, finding that the "maps" of Meseguer are theoroidal comorphisms, while theoroidal morphisms are a new concept. We introduce "forward" and "seminatural" morphisms, and develop some of their properties. Appendices discuss institutions for partial algebra, a variant of order sorted algebra, two versions of hidden algebra, and...
Proving Correctness Of Refinement And Implementation
, 1996
"... The notions of state and observable behaviour are fundamental to many areas of computer science. Hidden sorted algebra, an extension of many sorted algebra, captures these notions through hidden sorts and the behavioural satisfaction of equations. This makes it a powerful formalisation of abstract m ..."
Abstract

Cited by 29 (4 self)
 Add to MetaCart
The notions of state and observable behaviour are fundamental to many areas of computer science. Hidden sorted algebra, an extension of many sorted algebra, captures these notions through hidden sorts and the behavioural satisfaction of equations. This makes it a powerful formalisation of abstract machines, and many results suggest that it is also suitable for the semantics of the object paradigm. Another extension of many sorted algebra, namely order sorted algebra, has proved useful in system specification and prototyping because of the way it handles subtypes and errors. The combination of these two algebraic approaches, hidden order sorted algebra, has also been proposed as a foundation for object paradigm, and has much promise as a foundation for Software Engineering. This paper extends recent work on hidden order sorted algebra by investigating the refinement and implementation of hidden order sorted specifications. We present definitions of refinement and implementation for suc...
Hidden Congruent Deduction
 Automated Deduction in Classical and NonClassical Logics
, 1998
"... This paper presents some techniques of this kind in the area called hidden algebra, clustered around the central notion of coinduction. We believe hidden algebra is the natural next step in the evolution of algebraic semantics and its first order proof technology. Hidden algebra originated in [7], a ..."
Abstract

Cited by 27 (18 self)
 Add to MetaCart
This paper presents some techniques of this kind in the area called hidden algebra, clustered around the central notion of coinduction. We believe hidden algebra is the natural next step in the evolution of algebraic semantics and its first order proof technology. Hidden algebra originated in [7], and was developed further in [8, 10, 3, 12, 5] among other places; the most comprehensive survey currently available is [12]
Extra Theory Morphisms for Institutions: logical semantics for multiparadigm languages
, 1996
"... We extend the ordinary concept of theory morphism in institutions to extra theory morphisms. Extra theory morphism map theories belonging to different institutions across institution morphisms. We investigate the basic mathematical properties of extra theory morphisms supporting the semantics of log ..."
Abstract

Cited by 26 (7 self)
 Add to MetaCart
We extend the ordinary concept of theory morphism in institutions to extra theory morphisms. Extra theory morphism map theories belonging to different institutions across institution morphisms. We investigate the basic mathematical properties of extra theory morphisms supporting the semantics of logical multiparadigm languages, especially structuring specifications (module systems) a la OBJClear. They include model reducts, free constructions (liberality), colimits, model amalgamation (exactness), and inclusion systems. We outline a general logical semantics for languages whose semantics satisfy certain "logical" principles by extending the institutional semantics developed within the ClearOBJ tradition. Finally, in the Appendix, we briefly illustrate it with the concrete example of CafeOBJ. Keywords Algebraic specification, Institutions, Theory morphism. AMS Classifications 68Q65, 18C10, 03G30, 08A70 2 1 Introduction Computing Motivation This work belongs to the research are...
Categorybased Semantics for Equational and Constraint Logic Programming
, 1994
"... This thesis proposes a general framework for equational logic programming, called categorybased equational logic by placing the general principles underlying the design of the programming language Eqlog and formulated by Goguen and Meseguer into an abstract form. This framework generalises equation ..."
Abstract

Cited by 24 (10 self)
 Add to MetaCart
This thesis proposes a general framework for equational logic programming, called categorybased equational logic by placing the general principles underlying the design of the programming language Eqlog and formulated by Goguen and Meseguer into an abstract form. This framework generalises equational deduction to an arbitrary category satisfying certain natural conditions; completeness is proved under a hypothesis of quantifier projectivity, using a semantic treatment that regards quantifiers as models rather than variables, and regards valuations as model morphisms rather than functions. This is used as a basis for a model theoretic categorybased approach to a paramodulationbased operational semantics for equational logic programming languages. Categorybased equational logic in conjunction with the theory of institutions is used to give mathematical foundations for modularisation in equational logic programming. We study the soundness and completeness problem for module imports i...
Circular Coinduction
 In International Joint Conference on Automated Reasoning
, 2000
"... Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However, algorithms using circular coinduction can ..."
Abstract

Cited by 12 (5 self)
 Add to MetaCart
Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However, algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.
A Hidden Herbrand Theorem: Combining the Object and Logic Paradigms
 Principles of Declarative Programming
, 1998
"... : The benefits of the object, logic (or relational), functional, and constraint paradigms ..."
Abstract

Cited by 11 (3 self)
 Add to MetaCart
: The benefits of the object, logic (or relational), functional, and constraint paradigms
Hidden Algebra for Software Engineering
 Proceedings Combinatorics, Computation and Logic
, 1999
"... : This paper is an introduction to recent research on hidden algebra and its application to software engineering; it is intended to be informal and friendly, but still precise. We first review classical algebraic specification for traditional "Platonic" abstract data types like integers, vectors, ma ..."
Abstract

Cited by 10 (0 self)
 Add to MetaCart
: This paper is an introduction to recent research on hidden algebra and its application to software engineering; it is intended to be informal and friendly, but still precise. We first review classical algebraic specification for traditional "Platonic" abstract data types like integers, vectors, matrices, and lists. Software engineering also needs changeable "abstract machines," recently called "objects," that can communicate concurrently with other objects through visible "attributes" and statechanging "methods." Hidden algebra is a new development in algebraic semantics designed to handle such systems. Equational theories are used in both cases, but the notion of satisfaction for hidden algebra is behavioral, in the sense that equations need only appear to be true under all possible experiments; this extra flexibility is needed to accommodate the clever implementations that software engineers often use to conserve space and/or time. The most important results in hidden algebra are ...
Foundations of Behavioural Specification in Rewriting Logic
, 1996
"... We extend behavioural specification based on hidden sorts to rewriting logic by constructing a hybrid between the two underlying logics. This is achieved by defining a concept of behavioural satisfaction for rewriting logic. Our approach is semantic in that it is based on a general construction on m ..."
Abstract

Cited by 9 (2 self)
 Add to MetaCart
We extend behavioural specification based on hidden sorts to rewriting logic by constructing a hybrid between the two underlying logics. This is achieved by defining a concept of behavioural satisfaction for rewriting logic. Our approach is semantic in that it is based on a general construction on models, called behaviour image, which uses final models in an essential way. However we provide syntactic characterisations for the for the behavioural satisfaction relation, thus opening the door for shifting recent advanced proof techniques for behavioural satisfaction to rewriting logic. We also show that the rewriting logic behavioural satisfaction obeys the socalled "satisfaction condition" of the theory of institutions, thus providing support for OBJ style modularisation for this new paradigm. 1 Introduction This research aims at integrating two different semantic approaches on objects and concurrency by internalising behavioural specification [12] to [conditional] rewriting logic (abb...