Results 1  10
of
70
WellStructured Transition Systems Everywhere!
 THEORETICAL COMPUTER SCIENCE
, 1998
"... Wellstructured transition systems (WSTS's) are a general class of infinite state systems for which decidability results rely on the existence of a wellquasiordering between states that is compatible with the transitions. In this article, we provide an extensive treatment of the WSTS idea and ..."
Abstract

Cited by 194 (9 self)
 Add to MetaCart
Wellstructured transition systems (WSTS's) are a general class of infinite state systems for which decidability results rely on the existence of a wellquasiordering between states that is compatible with the transitions. In this article, we provide an extensive treatment of the WSTS idea and show several new results. Our improved definitions allow many examples of classical systems to be seen as instances of WSTS's.
Natural termination
 Theoretical Computer Science
"... Abstract. We generalize the various path orderings and the conditions under which they work, and describe an implementation of this general ordering. We look at methods for proving termination of orthogonal systems and give a new solution to a problem of Zantema's. 1 ..."
Abstract

Cited by 83 (11 self)
 Add to MetaCart
Abstract. We generalize the various path orderings and the conditions under which they work, and describe an implementation of this general ordering. We look at methods for proving termination of orthogonal systems and give a new solution to a problem of Zantema's. 1
The Complexity of Querying Indefinite Data about Linearly Ordered Domains
 In The Proceedings of the Eleventh ACM SIGACTSIGMODSIGART Symposium on Principles of Database Systems
, 1992
"... In applications dealing with ordered domains, the available data is frequently indefinite. While the domain is actually linearly ordered, only some of the order relations holding between points in the data are known. Thus, the data provides only a partial order, and query answering involves determin ..."
Abstract

Cited by 40 (2 self)
 Add to MetaCart
In applications dealing with ordered domains, the available data is frequently indefinite. While the domain is actually linearly ordered, only some of the order relations holding between points in the data are known. Thus, the data provides only a partial order, and query answering involves determining what holds under all the compatible linear orders. In this paper we study the complexity of evaluating queries in logical databases containing such indefinite information. We show that in this context queries are intractable even under the data complexity measure, but identify a number of PTIME subproblems. Data complexity in the case of monadic predicates is one of these PTIME cases, but for disjunctive queries the proof is nonconstructive, using wellquasiorder techniques. We also show that the query problem we study is equivalent to the problem of containment of conjunctive relational database queries containing inequalities. One of our results implies that the latter is \Pi p 2 ...
On the Classical Decision Problem
 Perspectives in Mathematical Logic
, 1993
"... this paper. In particular, their comments inspired and gave arguments for the discussion on the value of the classical decision problem after Church's and Turing's results. References ..."
Abstract

Cited by 36 (0 self)
 Add to MetaCart
this paper. In particular, their comments inspired and gave arguments for the discussion on the value of the classical decision problem after Church's and Turing's results. References
Specialization of Lazy Functional Logic Programs
 IN PROC. OF THE ACM SIGPLAN CONF. ON PARTIAL EVALUATION AND SEMANTICSBASED PROGRAM MANIPULATION, PEPM'97, VOLUME 32, 12 OF SIGPLAN NOTICES
, 1997
"... Partial evaluation is a method for program specialization based on fold/unfold transformations [8, 25]. Partial evaluation of pure functional programs uses mainly static values of given data to specialize the program [15, 44]. In logic programming, the socalled static/dynamic distinction is hard ..."
Abstract

Cited by 35 (21 self)
 Add to MetaCart
Partial evaluation is a method for program specialization based on fold/unfold transformations [8, 25]. Partial evaluation of pure functional programs uses mainly static values of given data to specialize the program [15, 44]. In logic programming, the socalled static/dynamic distinction is hardly present, whereas considerations of determinacy and choice points are far more important for control [12]. We discuss these issues in the context of a (lazy) functional logic language. We formalize a twophase specialization method for a nonstrict, first order, integrated language which makes use of lazy narrowing to specialize the program w.r.t. a goal. The basic algorithm (first phase) is formalized as an instance of the framework for the partial evaluation of functional logic programs of [2, 3], using lazy narrowing. However, the results inherited by [2, 3] mainly regard the termination of the PE method, while the (strong) soundness and completeness results must be restated for the lazy strategy. A postprocessing renaming scheme (second phase) is necessary which we describe and illustrate on the wellknown matching example. This phase is essential also for other nonlazy narrowing strategies, like innermost narrowing, and our method can be easily extended to these strategies. We show that our method preserves the lazy narrowing semantics and that the inclusion of simplification steps in narrowing derivations can improve control during specialization.
Counting patternfree set partitions I: A generalization of Stirling numbers of the second kind
, 2000
"... A partition u of [k] = f1; 2; : : : ; kg is contained in another partition v of [l] if [l] has a ksubset on which v induces u. We are interested in counting partitions v not containing a given partition u or a given set of partitions R. This concept is related to that of forbidden permutations. ..."
Abstract

Cited by 22 (11 self)
 Add to MetaCart
A partition u of [k] = f1; 2; : : : ; kg is contained in another partition v of [l] if [l] has a ksubset on which v induces u. We are interested in counting partitions v not containing a given partition u or a given set of partitions R. This concept is related to that of forbidden permutations. A strengthening of StanleyWilf conjecture is proposed.
Graph Minor Theory
 BULLETIN (NEW SERIES) OF THE AMERICAN MATHEMATICAL SOCIETY
, 2005
"... A monumental project in graph theory was recently completed. The project, started by Robertson and Seymour, and later joined by Thomas, led to entirely new concepts and a new way of looking at graph theory. The motivating problem was Kuratowski’s characterization of planar graphs, and a farreaching ..."
Abstract

Cited by 17 (0 self)
 Add to MetaCart
A monumental project in graph theory was recently completed. The project, started by Robertson and Seymour, and later joined by Thomas, led to entirely new concepts and a new way of looking at graph theory. The motivating problem was Kuratowski’s characterization of planar graphs, and a farreaching generalization of this, conjectured by Wagner: If a class of graphs is minorclosed (i.e., it is closed under deleting and contracting edges), then it can be characterized by a finite number of excluded minors. The proof of this conjecture is based on a very general theorem about the structure of large graphs: If a minorclosed class of graphs does not contain all graphs, then every graph in it is glued together in a treelike fashion from graphs that can almost be embedded in a fixed surface. We describe the precise formulation of the main results and survey some of its applications to algorithmic and structural problems in graph theory.