Results 1 
1 of
1
Fast and accurate estimation of shortest paths in large graphs
 In Proceedings of Conference on Information and Knowledge Management (CIKM
, 2010
"... Computing shortest paths between two given nodes is a fundamental operation over graphs, but known to be nontrivial over large diskresident instances of graph data. While a numberoftechniquesexistfor answeringreachabilityqueries and approximating node distances efficiently, determining actual short ..."
Abstract

Cited by 9 (0 self)
 Add to MetaCart
Computing shortest paths between two given nodes is a fundamental operation over graphs, but known to be nontrivial over large diskresident instances of graph data. While a numberoftechniquesexistfor answeringreachabilityqueries and approximating node distances efficiently, determining actual shortest paths (i.e. the sequence of nodes involved) is often neglected. However, in applications arising in massive online social networks, biological networks, and knowledge graphs it is often essential to find out many, if not all, shortest paths between two given nodes. In this paper, we address this problem and present a scalable sketchbased index structure that not only supports estimation of node distances, but also computes corresponding shortest paths themselves. Generating the actual path information allows for further improvements to the estimation accuracy of distances (and paths), leading to nearexact shortestpath approximations in real world graphs. We evaluate our techniques – implemented within a fully functional RDF graph database system – over large realworld social and biological networks of sizes ranging from tens of thousand to millions of nodes and edges. Experiments on several datasets show that we can achieve query response times providing several orders of magnitude speedup over traditional path computations while keeping the estimation errors between 0 % and 1 % on average.