Results 1 
5 of
5
Making data structures persistent
, 1989
"... This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any t ..."
Abstract

Cited by 256 (5 self)
 Add to MetaCart
This paper is a study of persistence in data structures. Ordinary data structures are ephemeral in the sense that a change to the structure destroys the old version, leaving only the new version available for use. In contrast, a persistent structure allows access to any version, old or new, at any time. We develop simple, systematic, and efftcient techniques for making linked data structures persistent. We use our techniques to devise persistent forms of binary search trees with logarithmic access, insertion, and deletion times and O (1) space bounds for insertion and deletion.
Spaceefficient finger search on degreebalanced search trees
 In SODA
, 2003
"... We show how to support the finger search operation on degreebalanced search trees in a spaceefficient manner that retains a worstcase time bound of O(log d), where d is the difference in rank between successive search targets. While most existing treebased designs allocate linear extra storage i ..."
Abstract

Cited by 10 (1 self)
 Add to MetaCart
We show how to support the finger search operation on degreebalanced search trees in a spaceefficient manner that retains a worstcase time bound of O(log d), where d is the difference in rank between successive search targets. While most existing treebased designs allocate linear extra storage in the nodes (e.g., for side links and parent pointers), our design maintains a compact auxiliary data structure called the “hand ” during the lifetime of the tree and imposes no other storage requirement within the tree. The hand requires O(log n) space for an nnode tree and has a relatively simple structure. It can be updated synchronously during insertions and deletions with time proportional to the number of structural changes in the tree. The auxiliary nature of the hand also makes it possible to introduce finger searches into any existing implementation without modifying the underlying data representation (e.g., any implementation of RedBlack trees can be used). Together these factors make finger searches more appealing in practice. Our design also yields a simple yet optimal inorder walk algorithm with worstcase O(1) work per increment (again without any extra storage requirement in the nodes), and we believe our algorithm can be used in database applications when the overall performance is very sensitive to retrieval latency. 1
Finger Search on Balanced Search Trees
, 2006
"... This thesis introduces the concept of a heterogeneous decomposition of a balanced search tree and apply it to the following problems: • How can finger search be implemented without changing the representation of a RedBlack Tree, such as introducing extra storage to the nodes? (Answer: Any degreeba ..."
Abstract
 Add to MetaCart
This thesis introduces the concept of a heterogeneous decomposition of a balanced search tree and apply it to the following problems: • How can finger search be implemented without changing the representation of a RedBlack Tree, such as introducing extra storage to the nodes? (Answer: Any degreebalanced search tree can support finger search without modification in its representation by maintaining an auxiliary data structure of logarithmic size and suitably modifying the search algorithm to make use of this auxiliary data structure.) • Do MultiSplay Trees, which is known to be O(log log n)competitive to the optimal binary search trees, have the Dynamic Finger property? (Answer: This is work in progress. We believe the answer is yes.)
SpaceEfficient Finger Search on DegreeBalanced Search Trees*
"... We show how to support he finger search operation on degreebalanced search trees in a spaceefficient manner that retains a worstcase time bound of O(log d), where d is the difference in rank between successive search targets. While most existing treebased esigns allocate linear extra storage in ..."
Abstract
 Add to MetaCart
We show how to support he finger search operation on degreebalanced search trees in a spaceefficient manner that retains a worstcase time bound of O(log d), where d is the difference in rank between successive search targets. While most existing treebased esigns allocate linear extra storage in the nodes (e.g., for side links and parent pointers), our design maintains a compact auxiliary data structure called the "hand " during the lifetime of the tree and imposes no other storage requirement within the tree. The hand requires O(log n) space for an nnode tree and has a relatively simple structure. It can be updated synchronously during insertions and deletions with time proportional to the number of structural changes in the tree. The mLxiliary nature of the hand also makes it possible to introduce finger searches into any existing implementation without modifying the underlying data representation (e.g., any implementation of RedBlack trees can be used). Together these factors make finger searches more appealing in practice. Our design also yields a simple yet optimal inorder walk algorithm with worstcase O(1) work per increment (again without any extra storage requirement in the nodes), and we believe our algorithm can be used in database applications when the overall performance is very sensitive to retrieval latency. 1 In t roduct ion The problem of maintaining a sorted list of unique, totallyordered elements is ubiquitous in computer science. When efficient element access (insert, delete, or search) is needed, one of the most common solutions is to use some form of balanced search trees to represent the list. Over the years many forms of balanced search trees have been devised, analyzed and implemented. Balanced search trees are very versatile representa